cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A059248 Numerator of 1/F(1) + 1/F(2) + 1/F(3) + ... + 1/F(n), where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 2, 5, 17, 91, 379, 5047, 35849, 614893, 6800951, 607326679, 3651532639, 851897554247, 24724573280923, 301787157353771, 14188276949397301, 22662903194758542865, 430644772287132696121, 1800653989272587268758525
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 22 2001

Keywords

Examples

			a(4) = 17 because 1/F1 + 1/F2 + 1/F3 + 1/F4 = 1 + 1 + 1/2 + 1/3 = 17/6 and the numerator is 17.
1, 2, 5/2, 17/6, 91/30, 379/120, 5047/1560, 35849/10920, 614893/185640, 6800951/2042040, 607326679/181741560, ... = A059248/A035105.
		

Crossrefs

Programs

  • Maple
    BB:=n->sum(1/fibonacci(i), i=1..n): a:=n->floor(numer(BB(n))): seq(a(n), n=1..19); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    Table[ 1 / Fibonacci[n], {n, 1, 19}] // Accumulate // Numerator (* Jean-François Alcover, Mar 07 2013 *)
  • PARI
    lista(nn) = s = 0; for (n=1, nn, s += 1/fibonacci(n); print1(numerator(s), ", ");); \\ Michel Marcus, Nov 28 2014

Extensions

More terms from Naohiro Nomoto, Jun 21 2001
Offset changed to 1 by Michel Marcus, Nov 28 2014

A129655 Numbers that set a new record for number of Fibonacci divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 55440, 720720, 12252240, 232792560, 6750984240, 276790353840, 12732356276640, 523410559111440, 24076885719126240, 1131613628798933280, 100713612963105061920, 20042008979657907322080
Offset: 1

Views

Author

Jason Earls, May 19 2007

Keywords

Comments

From Donovan Johnson, Jul 07 2009: (Start)
a(15) <= 598420745002080,
a(16) <= 36503665445126880,
a(17) <= 1131613628798933280,
a(18) <= 100713612963105061920. (End)
From Robert Israel, Sep 26 2019: (Start)
a(15) <= 523410559111440,
a(16) <= 24076885719126240. (End)
From David A. Corneth, Sep 27 2019: (Start)
a(19) <= 20042008979657907322080,
a(20) <= 4669788092260292406044640,
a(21) <= 1312210453925142166098543840,
a(22) <= 414821946023574034721351415840,
a(23) <= 116564966832624303756699747851040,
a(24) <= 37417354353272401505900619060183840,
a(25) <= 19494441618054921184574222530355780640,
a(26) <= 31132623264033709131765033380978181682080,
a(27) <= 67277598873576845433744237136293850614974880. (End)
From a(1) up to a(14), last known term, this sequence is equivalent to: a(n) is the smallest number that has exactly n Fibonacci divisors (A000045). The products of the new Fibonacci divisors that appear successively are in A349100. - Bernard Schott, Jul 15 2022

Examples

			5040 has 60 divisors with 7 of them being Fibonacci numbers, namely 1, 2, 3, 5, 8, 21 and 144.
		

References

  • J. Earls, Red Zen, Lulu Press, NY, 2006, p. 105.

Crossrefs

Formula

a(n) <= A035105(n+1). - Daniel Suteu, Sep 27 2019

Extensions

More terms from Donovan Johnson, Feb 26 2008
a(14) from Donovan Johnson, Jul 07 2009
a(15)-a(19) confirmed by David A. Corneth, Sep 06 2024

A233287 a(n) = lcm_{i=1..n} A001177(i); partial LCM-products of Fibonacci entry points.

Original entry on oeis.org

1, 3, 12, 12, 60, 60, 120, 120, 120, 120, 120, 120, 840, 840, 840, 840, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 12600, 239400, 239400, 239400, 239400, 239400, 239400, 2633400
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

From n=3 onward it seems that lcm_{i=1..n} A001175(i) = 2*a(n).

Crossrefs

Records occur at A233282. Cf. also A233283, A233284, A233285, A001175..A001177, A035105.

Formula

a(1)=1, and for n > 1, a(n) = lcm(A001177(n), a(n-1)).
a(n) = lcm_{i=1..n} A001177(i). [the least common multiple of all terms from A001177(1) to A001177(n)]

A059247 Denominator of Sum_{j=1..n} d(j)/n, where d = number of divisors function (A000005).

Original entry on oeis.org

1, 2, 3, 1, 1, 3, 7, 2, 9, 10, 11, 12, 13, 14, 1, 8, 17, 9, 19, 10, 3, 11, 23, 2, 25, 2, 27, 28, 29, 10, 31, 32, 11, 34, 35, 9, 37, 19, 13, 20, 41, 1, 43, 1, 45, 23, 1, 8, 49, 50, 51, 52, 53, 54, 5, 56, 19, 58, 59, 20, 61, 62, 3, 8, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2001

Keywords

Examples

			1, 3/2, 5/3, 2, 2, 7/3, 16/7, 5/2, 23/9, 27/10, ...
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[DivisorSigma[0, j]/n, {j,1,n}], {n,1,100}]] (* G. C. Greubel, Jan 02 2016 *)
  • PARI
    a(n) = denominator(sum(j=1, n, numdiv(j))/n); \\ Michel Marcus, Jan 03 2017
    
  • Python
    from math import isqrt, gcd
    def A059247(n): return n//gcd(n,(lambda m: 2*sum(n//k for k in range(1, m+1))-m*m)(isqrt(n))) # Chai Wah Wu, Oct 08 2021

Formula

a(n) = denominator(A006218(n)/n). - Michel Marcus, Jan 03 2017

A062954 Least common multiple of Lucas numbers L(0), L(1), ..., L(n).

Original entry on oeis.org

2, 2, 6, 12, 84, 924, 2772, 80388, 3778236, 71786484, 2943245844, 585705922956, 13471236227988, 7018514074781748, 1972202455013671188, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 0

Views

Author

Reiner Martin, Jul 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=20,luc},luc=LucasL[Range[0,nn]];Rest[Table[LCM@@Take[luc,n],{n,nn}]]] (* Harvey P. Dale, Jun 29 2015 *)
  • PARI
    A000032(n) = fibonacci(n+1)+fibonacci(n-1)
    a(n) = {v = 1; for (i=0, n, v = lcm(v, A000032(i));); return (v);} \\ Michel Marcus, Jul 22 2013

Extensions

a(0) and more terms from Sean A. Irvine, Apr 15 2023

A292794 Numbers not congruent to A000045(k) mod A000045(k+1) for all k > 1.

Original entry on oeis.org

0, 4, 6, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 64, 66, 70, 72, 82, 84, 90, 94, 96, 100, 102, 106, 114, 120, 124, 126, 130, 132, 136, 142, 150, 154, 156, 162, 166, 172, 174, 180, 184, 186, 192, 196, 204, 210, 214, 220, 222, 226, 232, 234, 240, 246, 250, 252, 256
Offset: 0

Views

Author

Ely Golden, Sep 23 2017

Keywords

Comments

For n > 0, also numbers n such that A292032(n) = 1.
It is conjectured that A035105(n) is always a member of this sequence for n >= 4 but this remains unproved.
This is the complement of (1 + 2Z) U (2 + 3Z) U (3 + 5Z) U (5 + 8Z) U ..., see also the Example section. - M. F. Hasler, Feb 25 2018

Examples

			a(2) = 6 since 6 mod 2 = 0, 6 mod 3 = 0, 6 mod 5 = 1, and 6 mod 8 = 6. (No other terms of A000045 need to be checked since the "illegal congruences" are all greater than 6, yet 6 is always congruent to 6 for those terms.)
From _M. F. Hasler_, Feb 26 2018: (Start)
This set can be constructed using a sieve which removes:
- first all numbers == 1 (mod 2), there remain the even numbers 0, 2, 4...;
- then all numbers == 2 (mod 3), i.e., == 2 (mod 6), there remain the numbers == 0 or 4 (mod 6): 0, 4, 6, 10, 12, 16, 18, 22, 24, 28, ...;
- then all numbers == 3 (mod 5), i.e., == 8 (mod 10), these are the numbers == 18 or 28 (mod 30), there remain numbers == 0, 4, 6, 10, 12, 16, 22 or 24 (mod 30);
- then all those == 5 (mod 8), but all these are odd;
- then all those == 8 (mod 13), i.e., == 8 (mod 26): there are 8 of these in [1..30*13], and there remain 8*(13-1) residue classes mod 30*13.
- then all those == 13 (mod 21): there are 48 of these left in [1..30*13*7], and there remain 8*12*7-48 = 48*(14-1) residue classes mod 30*13*7.
- then again there are none to remove == 21 (mod 34);
- then those == 34 (mod 55): these are 12*13 of the remaining 48*13*11 residue classes mod 30*13*7*11, so there remain 12*13*(4*11-1) of these; and so on.
This yields as upper bound of the asymptotic density: 1/2 * 2/3 * 4/5 * 12/13 * 13*14 * 43/44 ~ 0.223, the actual value is 0.2187...
(End)
		

Crossrefs

Cf. A300004 for the sequence of first differences.

Programs

  • Mathematica
    {0}~Join~Select[Range[3, 250], Function[n, NoneTrue[Block[{k = {1, 1}}, While[Last@ k <= n, AppendTo[k, Total@ Take[k, -2]]]; Partition[Most@ k, 2, 1]], Mod[n, #2] == #1 & @@ # &]]] (* Michael De Vlieger, Mar 19 2018 *)
  • PARI
    is_A292794(n,F=1)=!for(k=3,oo,F==n%(F=fibonacci(k))&&return;F>n&&break) \\ M. F. Hasler, Feb 25 2018

Formula

a(10^7) = 45721410, a(10^8) = 457214230, a(10^9) = 4572142416. - Jacques Tramu, Feb 26 2018

A180402 a(n) = lcm(1,...,Fibonacci(n)).

Original entry on oeis.org

1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2010

Keywords

Comments

Also least period for number of ways of placing k non-attacking queens on an n X n chessboard. [conjectured by Kotesovec; proved for n <= 5. - Thomas Zaslavsky, Jun 24 2018]

Crossrefs

Programs

  • Maple
    a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
    seq(a(n), n=1..14);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
    Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
  • PARI
    a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018

Extensions

a(11) onwards from Robert G. Wilson v, Sep 05 2010

A218492 a(n) = lcm(1,...,L(n)), where L(n) = n-th Lucas number.

Original entry on oeis.org

2, 1, 6, 12, 420, 27720, 12252240, 2329089562800, 442720643463713815200, 410555180440430163438262940577600, 10514768575588513054648621420819083891762891880353600, 337293588832926264639465766794841407432394382785157234228847021917234018060677390066992000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Apply[LCM, Range[LucasL[k]]], {k, 0, 10}]

A225904 Numerator of Sum_{k=1..n} 1/L(k) where L(n) is the n-th Lucas number (A000204).

Original entry on oeis.org

1, 4, 19, 145, 1679, 5191, 153311, 7286005, 69689327, 2869226821, 572447760301, 6593608277800, 3438637721790797, 966842075996112436, 119933240206586434591, 264753799412041684949165, 945570749875765527295137611, 303554979754466691916744807193
Offset: 1

Views

Author

Michel Lagneau, May 20 2013

Keywords

Examples

			1, 4/3, 19/12, 145/84, 1679/924, 5191/2772, ... = A225904/A225905.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[1/LucasL[k], {k, 1, n}], {n, 1, 30}]]
    Numerator[Accumulate[1/LucasL[Range[20]]]] (* Harvey P. Dale, Sep 16 2016 *)

A225905 Denominator of Sum_{k=1..n} 1/L(k) where L(n) is the n-th Lucas number (A000204).

Original entry on oeis.org

1, 3, 12, 84, 924, 2772, 80388, 3778236, 35893242, 1471622922, 292852961478, 3367809056997, 1754628518695437, 493050613753417797, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 1

Views

Author

Michel Lagneau, May 20 2013

Keywords

Examples

			1, 4/3, 19/12, 145/84, 1679/924, 5191/2772, ... = A225904/A225905.
		

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[1/LucasL[k], {k, 1, n}], {n, 1, 30}]]
    Denominator[Accumulate[1/LucasL[Range[20]]]] (* Harvey P. Dale, Mar 11 2015 *)
Showing 1-10 of 14 results. Next