cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180402 a(n) = lcm(1,...,Fibonacci(n)).

Original entry on oeis.org

1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2010

Keywords

Comments

Also least period for number of ways of placing k non-attacking queens on an n X n chessboard. [conjectured by Kotesovec; proved for n <= 5. - Thomas Zaslavsky, Jun 24 2018]

Crossrefs

Programs

  • Maple
    a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
    seq(a(n), n=1..14);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
    Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
  • PARI
    a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018

Extensions

a(11) onwards from Robert G. Wilson v, Sep 05 2010

A218492 a(n) = lcm(1,...,L(n)), where L(n) = n-th Lucas number.

Original entry on oeis.org

2, 1, 6, 12, 420, 27720, 12252240, 2329089562800, 442720643463713815200, 410555180440430163438262940577600, 10514768575588513054648621420819083891762891880353600, 337293588832926264639465766794841407432394382785157234228847021917234018060677390066992000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Apply[LCM, Range[LucasL[k]]], {k, 0, 10}]

A355322 LCM of Lucas numbers {L(1), L(2), ..., L(n)}.

Original entry on oeis.org

1, 3, 12, 84, 924, 2772, 80388, 3778236, 71786484, 2943245844, 585705922956, 13471236227988, 7018514074781748, 1972202455013671188, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 1

Views

Author

Clark Kimberling, Jul 16 2022

Keywords

Crossrefs

Cf. A000032, A035105 (LCM of Fibonacci numbers), essentially the same as A062954.

Programs

  • Mathematica
    Table[LCM @@ LucasL[Range[n]], {n, 1, 16}]
    Module[{nn=20,ln},ln=LucasL[Range[nn]];Table[LCM@@Take[ln,n],{n,nn}]] (* Harvey P. Dale, Sep 26 2024 *)
  • PARI
    Lucas(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
    a(n) = lcm(apply(Lucas, [1..n])); \\ Michel Marcus, Jul 17 2022
    
  • Python
    from math import lcm
    from sympy import lucas
    def A355322(n): return lcm(*(lucas(i) for i in range(1,n+1))) # Chai Wah Wu, Jul 17 2022
Showing 1-3 of 3 results.