A180402
a(n) = lcm(1,...,Fibonacci(n)).
Original entry on oeis.org
1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..17
- Christopher R. H. Hanusa, T. Zaslavsky, S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
- V. Kotesovec, Non-attacking chess pieces, 6ed, p.31, 2013
-
a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
seq(a(n), n=1..14); # Alois P. Heinz, Aug 12 2017
-
Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
-
a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018
A218492
a(n) = lcm(1,...,L(n)), where L(n) = n-th Lucas number.
Original entry on oeis.org
2, 1, 6, 12, 420, 27720, 12252240, 2329089562800, 442720643463713815200, 410555180440430163438262940577600, 10514768575588513054648621420819083891762891880353600, 337293588832926264639465766794841407432394382785157234228847021917234018060677390066992000
Offset: 0
-
Table[Apply[LCM, Range[LucasL[k]]], {k, 0, 10}]
A355322
LCM of Lucas numbers {L(1), L(2), ..., L(n)}.
Original entry on oeis.org
1, 3, 12, 84, 924, 2772, 80388, 3778236, 71786484, 2943245844, 585705922956, 13471236227988, 7018514074781748, 1972202455013671188, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 1
-
Table[LCM @@ LucasL[Range[n]], {n, 1, 16}]
Module[{nn=20,ln},ln=LucasL[Range[nn]];Table[LCM@@Take[ln,n],{n,nn}]] (* Harvey P. Dale, Sep 26 2024 *)
-
Lucas(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
a(n) = lcm(apply(Lucas, [1..n])); \\ Michel Marcus, Jul 17 2022
-
from math import lcm
from sympy import lucas
def A355322(n): return lcm(*(lucas(i) for i in range(1,n+1))) # Chai Wah Wu, Jul 17 2022
Showing 1-3 of 3 results.
Comments