cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A247240 Numbers such that A059248(k), the numerator of Sum_{i=1..k} 1/Fibonacci(i), is not equal to A250744(k), the denominator of the harmonic mean of the first k positive Fibonacci numbers.

Original entry on oeis.org

2, 7, 35, 245, 485, 12914
Offset: 1

Views

Author

Michel Marcus, Nov 28 2014

Keywords

Comments

Next term > 20000. - Jinyuan Wang, Feb 14 2020

Crossrefs

Programs

  • Mathematica
    s=0; lst={}; Do[s+=1/Fibonacci[n]; If[Numerator[s]!=Denominator[n/s], AppendTo[lst, n]], {n, 10000}]; lst (* Jinyuan Wang, Feb 14 2020 *)

Extensions

a(6) from Jinyuan Wang, Feb 14 2020

A035105 a(n) = LCM of Fibonacci sequence {F_1,...,F_n}.

Original entry on oeis.org

1, 1, 2, 6, 30, 120, 1560, 10920, 185640, 2042040, 181741560, 1090449360, 254074700880, 7368166325520, 449458145856720, 21124532855265840, 33735878969859546480, 640981700427331383120, 2679944489486672512824720, 109877724068953573025813520
Offset: 1

Views

Author

Fred Schwab (fschwab(AT)nrao.edu)

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          ilcm(a(n-1), combinat[fibonacci](n)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Feb 12 2018
  • Mathematica
    a[ n_ ] := LCM@@Table[ Fibonacci[ k ], {k, 1, n} ]
    With[{fibs=Fibonacci[Range[20]]},Table[LCM@@Take[fibs,n],{n, Length[ fibs]}]] (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    a(n)=lcm(apply(fibonacci,[1..n])) \\ Charles R Greathouse IV, Oct 07 2016
    
  • Python
    from math import lcm
    from sympy import fibonacci
    def A035105(n): return lcm(*(fibonacci(i) for i in range(1,n+1))) # Chai Wah Wu, Jul 17 2022

Formula

log(a(n)) ~ 3*n^2*log(phi)/Pi^2, where phi is the golden ratio, or equivalently lim_{n->oo} sqrt(6*log(A003266(n))/log(a(n))) = Pi. - Amiram Eldar, Jan 30 2019

A059840 a(n) = F(n)*F(n-1) if n odd otherwise F(n)*F(n-1)-1, where F = Fibonacci numbers A000045.

Original entry on oeis.org

0, 0, 2, 5, 15, 39, 104, 272, 714, 1869, 4895, 12815, 33552, 87840, 229970, 602069, 1576239, 4126647, 10803704, 28284464, 74049690, 193864605, 507544127, 1328767775, 3478759200, 9107509824, 23843770274, 62423800997, 163427632719, 427859097159, 1120149658760, 2932589879120
Offset: 1

Views

Author

N. J. A. Sloane, Feb 26 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..30],n->Sum([1..n-2],k->Fibonacci(k)*Fibonacci(k+2))); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    F:=Fibonacci; [(n mod 2) eq 0 select F(n)*F(n-1)-1 else F(n)*F(n-1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    seq(coeff(series(x^3*(2-x)/((1-x^2)*(1-3*x+x^2)), x,n+1),x,n),n=1..30); # Muniru A Asiru, Aug 09 2018
  • Mathematica
    Table[If[OddQ[n],Fibonacci[n]Fibonacci[n-1],Fibonacci[n] Fibonacci[n-1]-1],{n,30}]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    a(n) = { fibonacci(n)*fibonacci(n-1) - (n%2 == 0) } \\ Harry J. Smith, Jun 29 2009
    
  • Sage
    a=(x^3*(2-x)/((1-x^2)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 23 2019

Formula

G.f.: x^3*(2 - x)/((1 - x^2)*(1 - 3*x + x^2)). See a comment on A080144. - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{k=1..n-2} F(k)*F(k+2). - Alexander Adamchuk, May 17 2007
a(n+2) = (3*A001654(n) + A027941(n))/2, n >= 0. - Wolfdieter Lang, Jul 21 2012
a(n+2) = (3*(-1)^(n+1) - 5 + 2*Lucas(2*n + 3))/10, n >= 0. - Ehren Metcalfe, Aug 21 2017
a(n) = floor(1/(Sum_{k>=n} 1/Fibonacci(k)^2)) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
For n > 2, 2 * A000217(a(n)) = A228873(n-2). - Diego Rattaggi, Jan 27 2021

A119996 Numerator of Sum_{k=1..n} 1/(Fibonacci(k)*Fibonacci(k+2)).

Original entry on oeis.org

1, 5, 14, 39, 103, 272, 713, 1869, 4894, 12815, 33551, 87840, 229969, 602069, 1576238, 4126647, 10803703, 28284464, 74049689, 193864605, 507544126, 1328767775, 3478759199, 9107509824, 23843770273, 62423800997, 163427632718
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> F(n+1)*F(n+2)-1); # G. C. Greubel, Jul 23 2019
  • Magma
    [Fibonacci(n+1)* Fibonacci(n+2)-1: n in [1..30]]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    with(combinat): seq(fibonacci(n+1)*fibonacci(n+2)-1, n=1..30); # Zerinvary Lajos, Jan 31 2008
  • Mathematica
    Numerator[Table[Sum[1/(Fibonacci[k]*Fibonacci[k+2]),{k,n}],{n,30}]]
    LinearRecurrence[{3,0,-3,1},{1,5,14,39},30] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    vector(30, n, f=fibonacci; f(n+1)*f(n+2)-1) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    f=fibonacci; [f(n+1)*f(n+2)-1 for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4); a(0)=1, a(1)=5, a(2)=14, a(3)=39. - Harvey P. Dale, Aug 22 2011
G.f.: ((x-2)*x-1)/(x^4 - 3*x^3 + 3*x - 1). - Harvey P. Dale, Aug 22 2011
a(n) = Fibonacci(n+1)*Fibonacci(n+2) - 1. - Gary Detlefs, Mar 31 2012
a(n) = Sum_{k=1..n} Fibonacci(k+1)^2. Can be proved by induction from Gary Detlefs formula. - Joel Courtheyn, Mar 15 2021

A059247 Denominator of Sum_{j=1..n} d(j)/n, where d = number of divisors function (A000005).

Original entry on oeis.org

1, 2, 3, 1, 1, 3, 7, 2, 9, 10, 11, 12, 13, 14, 1, 8, 17, 9, 19, 10, 3, 11, 23, 2, 25, 2, 27, 28, 29, 10, 31, 32, 11, 34, 35, 9, 37, 19, 13, 20, 41, 1, 43, 1, 45, 23, 1, 8, 49, 50, 51, 52, 53, 54, 5, 56, 19, 58, 59, 20, 61, 62, 3, 8, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2001

Keywords

Examples

			1, 3/2, 5/3, 2, 2, 7/3, 16/7, 5/2, 23/9, 27/10, ...
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[DivisorSigma[0, j]/n, {j,1,n}], {n,1,100}]] (* G. C. Greubel, Jan 02 2016 *)
  • PARI
    a(n) = denominator(sum(j=1, n, numdiv(j))/n); \\ Michel Marcus, Jan 03 2017
    
  • Python
    from math import isqrt, gcd
    def A059247(n): return n//gcd(n,(lambda m: 2*sum(n//k for k in range(1, m+1))-m*m)(isqrt(n))) # Chai Wah Wu, Oct 08 2021

Formula

a(n) = denominator(A006218(n)/n). - Michel Marcus, Jan 03 2017

A250744 Denominator of the harmonic mean of the first n positive Fibonacci numbers.

Original entry on oeis.org

1, 1, 5, 17, 91, 379, 721, 35849, 614893, 6800951, 607326679, 3651532639, 851897554247, 24724573280923, 301787157353771, 14188276949397301, 22662903194758542865, 430644772287132696121, 1800653989272587268758525, 369150309888695460837999593
Offset: 1

Views

Author

Colin Barker, Nov 27 2014

Keywords

Comments

Similar to A059248. - Michel Marcus and Colin Barker, Nov 28 2014

Examples

			a(4) = 17 because the first 4 positive Fibonacci numbers are [1,1,2,3], and 4/(1/1+1/1+1/2+1/3) = 24/17.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A250743 (numerators).
Cf. A059248.

Programs

  • Mathematica
    Module[{nn=20,f},f=Fibonacci[Range[nn]];Table[HarmonicMean[Take[f,n]],{n,nn}]]//Denominator (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    s=vector(30); f=Vec(x/(1-x-x^2)+O(x^(#s+1))); n=d=0; for(k=1, #s, n++; d+=1/f[k]; s[k]=denominator(n/d)); s

A225904 Numerator of Sum_{k=1..n} 1/L(k) where L(n) is the n-th Lucas number (A000204).

Original entry on oeis.org

1, 4, 19, 145, 1679, 5191, 153311, 7286005, 69689327, 2869226821, 572447760301, 6593608277800, 3438637721790797, 966842075996112436, 119933240206586434591, 264753799412041684949165, 945570749875765527295137611, 303554979754466691916744807193
Offset: 1

Views

Author

Michel Lagneau, May 20 2013

Keywords

Examples

			1, 4/3, 19/12, 145/84, 1679/924, 5191/2772, ... = A225904/A225905.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[1/LucasL[k], {k, 1, n}], {n, 1, 30}]]
    Numerator[Accumulate[1/LucasL[Range[20]]]] (* Harvey P. Dale, Sep 16 2016 *)

A225905 Denominator of Sum_{k=1..n} 1/L(k) where L(n) is the n-th Lucas number (A000204).

Original entry on oeis.org

1, 3, 12, 84, 924, 2772, 80388, 3778236, 35893242, 1471622922, 292852961478, 3367809056997, 1754628518695437, 493050613753417797, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 1

Views

Author

Michel Lagneau, May 20 2013

Keywords

Examples

			1, 4/3, 19/12, 145/84, 1679/924, 5191/2772, ... = A225904/A225905.
		

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[1/LucasL[k], {k, 1, n}], {n, 1, 30}]]
    Denominator[Accumulate[1/LucasL[Range[20]]]] (* Harvey P. Dale, Mar 11 2015 *)
Showing 1-8 of 8 results.