cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059840 a(n) = F(n)*F(n-1) if n odd otherwise F(n)*F(n-1)-1, where F = Fibonacci numbers A000045.

Original entry on oeis.org

0, 0, 2, 5, 15, 39, 104, 272, 714, 1869, 4895, 12815, 33552, 87840, 229970, 602069, 1576239, 4126647, 10803704, 28284464, 74049690, 193864605, 507544127, 1328767775, 3478759200, 9107509824, 23843770274, 62423800997, 163427632719, 427859097159, 1120149658760, 2932589879120
Offset: 1

Views

Author

N. J. A. Sloane, Feb 26 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..30],n->Sum([1..n-2],k->Fibonacci(k)*Fibonacci(k+2))); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    F:=Fibonacci; [(n mod 2) eq 0 select F(n)*F(n-1)-1 else F(n)*F(n-1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    seq(coeff(series(x^3*(2-x)/((1-x^2)*(1-3*x+x^2)), x,n+1),x,n),n=1..30); # Muniru A Asiru, Aug 09 2018
  • Mathematica
    Table[If[OddQ[n],Fibonacci[n]Fibonacci[n-1],Fibonacci[n] Fibonacci[n-1]-1],{n,30}]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    a(n) = { fibonacci(n)*fibonacci(n-1) - (n%2 == 0) } \\ Harry J. Smith, Jun 29 2009
    
  • Sage
    a=(x^3*(2-x)/((1-x^2)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 23 2019

Formula

G.f.: x^3*(2 - x)/((1 - x^2)*(1 - 3*x + x^2)). See a comment on A080144. - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{k=1..n-2} F(k)*F(k+2). - Alexander Adamchuk, May 17 2007
a(n+2) = (3*A001654(n) + A027941(n))/2, n >= 0. - Wolfdieter Lang, Jul 21 2012
a(n+2) = (3*(-1)^(n+1) - 5 + 2*Lucas(2*n + 3))/10, n >= 0. - Ehren Metcalfe, Aug 21 2017
a(n) = floor(1/(Sum_{k>=n} 1/Fibonacci(k)^2)) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
For n > 2, 2 * A000217(a(n)) = A228873(n-2). - Diego Rattaggi, Jan 27 2021

A202503 Fibonacci self-fission matrix, by antidiagonals.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.

Examples

			Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
		

Crossrefs

Programs

  • Mathematica
    n = 14;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
    P = P1[[Range[2, n], Range[1, n]]];
    F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
    TableForm[P]  (* A202502, modified lower triangular Fibonacci array *)
    TableForm[Q]  (* A202451, upper tri. Fibonacci array *)
    TableForm[F]  (* A202503, Fibonacci fission array *)

A163154 Primes one less than a Golden rectangle number.

Original entry on oeis.org

5, 103, 3478759199, 116139356908771351, 37396512239913013823, 285687842248637730909432643746211633, 1391541769353191693086710038712557510379751, 1550980526109101915069808788349000570735950731617761605783
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A001654(k)-1, generated at k = 3, 6, 24, 42, 48, 86, 102, 138, 182,....
Yet another way of stating the definition: primes of the form F(k)*F(k+1)-1, where F(k) is the k-th Fibonacci number (A000045). - Colin Barker, Apr 07 2016

Examples

			103 is in the sequence because 103 = 8*13-1 = F(6)*F(7)-1.
		

Crossrefs

Programs

  • Mathematica
    q=0;lst={};Do[f=Fibonacci[n];If[PrimeQ[f*q-1],AppendTo[lst,f*q-1]];q=f, {n,6!}];lst
    f[n_] := Fibonacci@ n Fibonacci[n + 1] - 1; f /@ Select[Range@ 180, PrimeQ[f@ #] &] (* Michael De Vlieger, Apr 07 2016 *)
    Select[Times@@@Partition[Fibonacci[Range[150]],2,1]-1,PrimeQ] (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    L=List(); for(k=1, 200, if(isprime(p=fibonacci(k)*fibonacci(k+1)-1), listput(L, p))); Vec(L) /* Colin Barker, Apr 07 2016 */

Extensions

Definition reworded by R. J. Mathar, Sep 11 2009
a(8) from Colin Barker, Apr 07 2016

A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
		

Crossrefs

Cf. A202875.

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001911 *)
    Table[m[1, j], {j, 1, 12}]     (* A000045 *)
    Table[m[j, j], {j, 1, 12}]     (* A119996 *)
    Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A002940 *)

A203003 Symmetric matrix based on A007598(n+1), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 17, 9, 25, 40, 40, 25, 64, 109, 98, 109, 64, 169, 281, 265, 265, 281, 169, 441, 740, 685, 723, 685, 740, 441, 1156, 1933, 1802, 1865, 1865, 1802, 1933, 1156, 3025, 5065, 4709, 4910, 4819, 4910, 4709, 5065, 3025, 7921, 13256, 12337, 12827
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A007598(n+1) (squared Fibonacci numbers, beginning with F(2)), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203003 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203004 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....4.....9....25....64
4....17....40...109...281
9....40....98...265...685
25...109...265..1865
		

Crossrefs

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1]^2;
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];  (* A203003 *)
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]    (* A119996 *)
    Table[m[1, j], {j, 1, 12}]       (* A007598(n+1) *)
Showing 1-5 of 5 results.