A035122 Roots of 'squares remaining square when written backwards'.
1, 2, 3, 11, 12, 13, 21, 22, 26, 31, 33, 99, 101, 102, 103, 111, 112, 113, 121, 122, 201, 202, 211, 212, 221, 264, 301, 307, 311, 836, 1001, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1111, 1112, 1113, 1121, 1122, 1201, 1202, 1211
Offset: 1
Examples
99^2 = 9801 -> 1089 = 33^2.
Links
- Eric Weisstein's World of Mathematics, Square Number
- Index entry for sequences related to reversing digits of squares
Programs
-
Mathematica
Select[Range[10000], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ #^2]]]]] &] (* and then delete terms ending with 0 - N. J. A. Sloane, Jul 08 2011 *) Sqrt[Select[Range[2000]^2, Mod[#, 10]!=0&&IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[#]]]]]&]] (* Vincenzo Librandi, Sep 22 2015 *)
Formula
a(n) = sqrt(A033294(n)). - Michel Marcus, Sep 22 2015
Comments