cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A035134 Squarefree composite palindromes.

Original entry on oeis.org

6, 22, 33, 55, 66, 77, 111, 141, 161, 202, 222, 262, 282, 303, 323, 393, 434, 454, 474, 494, 505, 515, 535, 545, 555, 565, 595, 606, 626, 646, 707, 717, 737, 767, 777, 818, 838, 858, 878, 898, 939, 949, 959, 969, 979, 989, 1001, 1111, 1221, 1441, 1551, 1661
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Palindromes with at least two and all distinct prime factors.

Crossrefs

Programs

  • Maple
    N:= 4: # to get all terms with <= N digits
    revdigs:= proc(n) local L, j, nL;
      L:= convert(n, base, 10); nL:= nops(L);
      add(L[j]*10^(nL-j), j=1..nL);
    end proc:
    palis:= $0..9:
    for d from 2 to N do
      if d::even then
        palis:= palis, seq(x*10^(d/2)+revdigs(x), x=10^(d/2-1)..10^(d/2)-1)
      else
        palis:= palis, seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+revdigs(x), y=0..9), x=10^((d-3)/2)..10^((d-1)/2)-1);
      fi
    od:
    select(t -> not(isprime(t)) and numtheory:-issqrfree(t), [palis][3..-1]): # Robert Israel, Sep 18 2016
  • Mathematica
    sqfQ[n_]:=Max[Transpose[FactorInteger[n]][[2]]]<=1; palQ[n_]:=FromDigits[Reverse[IntegerDigits[n]]]==n; Select[Range[2,1662],!PrimeQ[#] && sqfQ[#] && palQ[#] &] (* Jayanta Basu, May 12 2013 *)
    Select[Range[2000],PalindromeQ[#]&&SquareFreeQ[#]&&CompositeQ[#]&] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    isA002113(n)=n=digits(n);for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1;
    is(n) = n>1 && isA002113(n) && issquarefree(n) && !isprime(n) \\ Altug Alkan, Sep 19 2016
    \\ in and output digits as a vector.
    
  • PARI
    nxtA002113(n)={my(d=n); i=(#d+1)\2; while(i&&d[i]==9, d[i]=0; d[#d+1-i]=0; i--); if(i, d[i]++; d[#d+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1); d}\\sum(i=1, #d, 10^(#d-i)*d[i])}
    \\ all terms up to n digits
    lista(n) = {my(p = [6],l=List(), sp, i); while(#p <= n, sp = sum(i=1,#p,p[i]*10^(#p-i)); if(issquarefree(sp)&&!isprime(sp), listput(l,sp)); p=nxtA002113(p));l} \\ David A. Corneth, Sep 19 2016
    
  • Python
    from itertools import product
    from sympy import factorint, isprime
    def pals(d, base=10): # all d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]: yield int(left + mid + right)
    def ok(pal): f = factorint(pal); return len(f)>1 and all(f[p]<2 for p in f)
    print(list(filter(ok, (p for d in range(1, 5) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021
Showing 1-1 of 1 results.