cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035137 Numbers that are not the sum of 2 palindromes (where 0 is considered a palindrome).

Original entry on oeis.org

21, 32, 43, 54, 65, 76, 87, 98, 201, 1031, 1041, 1042, 1051, 1052, 1053, 1061, 1062, 1063, 1064, 1071, 1072, 1073, 1074, 1075, 1081, 1082, 1083, 1084, 1085, 1086, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1099, 1101, 1103, 1104, 1105, 1106, 1107, 1108
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Apparently, every positive number is equal to the sum of at most 3 positive palindromes. - Giovanni Resta, May 12 2013
A260254(a(n)) = 0. - Reinhard Zumkeller, Jul 21 2015
A261675(a(n)) >= 3 (and, conjecturally, = 3). - N. J. A. Sloane, Sep 03 2015
This sequence is infinite. Proof: It is easy to see that 200...01 (with any number of zeros) cannot be the sum of two palindromes. - N. J. A. Sloane, Sep 03 2015
The conjecture that every number is the sum of 3 palindromes fails iff there is a term a(n) such that for all palindromes P < a(n), the difference a(n) - P is also a term of this sequence. - M. F. Hasler, Sep 08 2015
Cilleruelo and Luca (see links) have proved the conjecture that every positive integer is the sum of at most three palindromes (in bases >= 5), and also that the density of those that require three is positive. - Christopher E. Thompson, Apr 14 2016

Crossrefs

Cf. A260254, A260255 (complement), A002113, A261906, A261907.
Cf. A319477 (disallowing zero).

Programs

  • Haskell
    a035137 n = a035137_list !! (n-1)
    a035137_list = filter ((== 0) . a260254) [0..]
    -- Reinhard Zumkeller, Jul 21 2015
    
  • Maple
    N:= 4: # to get all terms with <= N digits
    revdigs:= proc(n) local L,j,nL;
      L:= convert(n,base,10); nL:= nops(L);
      add(L[j]*10^(nL-j),j=1..nL);
    end proc;
    palis:= $0..9:
    for d from 2 to N do
      if d::even then
        palis:= palis, seq(x*10^(d/2)+revdigs(x),x=10^(d/2-1)..10^(d/2)-1)
      else
        palis:= palis, seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+revdigs(x),y=0..9),x=10^((d-3)/2)..10^((d-1)/2)-1);
      fi
    od:
    palis:= [palis]:
    A:= Array(0..10^N-1):
    A[palis]:= 1:
    B:= SignalProcessing:-Convolution(A,A):
    select(t -> B[t+1] < 0.5, [$1..10^N-1]); # Robert Israel, Jun 22 2015
  • Mathematica
    palQ[n_]:=FromDigits[Reverse[IntegerDigits[n]]]==n; nn=1108; t={}; Do[i=c=0; While[i<=n && c!=1,If[palQ[i] && palQ[n-i], AppendTo[t,n]; c=1]; i++],{n,nn}]; Complement[Range[nn],t] (* Jayanta Basu, May 12 2013 *)
  • PARI
    is_A035137(n)={my(k=0);!until(n<2*k=nxt(k),is_A002113(n-k)&&return)} \\ Uses function nxt() given in A002113. Not very efficient for large n, better start with k=n-A261423(n). Maybe also better use A261423 rather than nxt(). - M. F. Hasler, Jul 21 2015