cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A261908 Numbers of the form |m - R(m)| for m in A035137, where R(m) denotes the digit-reversal of m.

Original entry on oeis.org

9, 90, 99, 180, 189, 270, 279, 360, 369, 450, 459, 540, 549, 630, 639, 720, 729, 810, 819, 900, 990, 999, 1089, 1179, 1269, 1359, 1449, 1539, 1629, 1719, 1728, 1800, 1809, 1908, 1980, 2079, 2088, 2268, 2358, 2448
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2015

Keywords

Comments

Created in an attempt to understand A035137. It would be nice to have an independent definition of these numbers. Obviously they are multiples of 9 - see A261909.

Examples

			21, 102, 1031 are some early terms in A035137, so this sequence contains 21-12=9, 201-102=99, 1301-1031=270.
		

Crossrefs

A261132 Number of ways to write n as the sum u+v+w of three palindromes (from A002113) with 0 <= u <= v <= w.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 16, 17, 17, 18, 17, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 7, 6, 6, 6, 6, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 11, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 12, 8, 8, 8
Offset: 0

Views

Author

Giovanni Resta, Aug 10 2015

Keywords

Comments

It is known that a(n) > 0 for every n, i.e., every number can be written as the sum of 3 palindromes.
The graph has a kind of self-similarity: looking at the first 100 values, there is a Gaussian-shaped peak centered at the first local maximum a(15) = 18. Looking at the first 10000 values, one sees just one Gaussian-shaped peak centered around the record and local maximum a(1453) = 766, but to both sides of this value there are smaller peaks, roughly at distances which are multiples of 10. In the range [1..10^6], one sees a Gaussian-shaped peak centered around the record a(164445) = 57714. In the range [1..3*10^7], there is a similar peak of height ~ 4.3*10^6 at 1.65*10^7, with smaller neighbor peaks at distances which are multiples of 10^6, etc. - M. F. Hasler, Sep 09 2018

Examples

			a(0)=1 because 0 = 0+0+0;
a(1)=1 because 1 = 0+0+1;
a(2)=2 because 2 = 0+1+1 = 0+0+2;
a(3)=3 because 3 = 1+1+1 = 0+1+2 = 0+0+3.
a(28) = 6 since 28 can be expressed in 6 ways as the sum of 3 palindromes, namely, 28 = 0+6+22 = 1+5+22 = 2+4+22 = 3+3+22 = 6+11+11 = 8+9+11.
		

Crossrefs

See A261422 for another version.

Programs

  • Maple
    A261132 := proc(n)
        local xi,yi,x,y,z,a ;
        a := 0 ;
        for xi from 1 do
            x := A002113(xi) ;
            if 3*x > n then
                return a;
            end if;
            for yi from xi do
                y := A002113(yi) ;
                if x+2*y > n then
                    break;
                else
                    z := n-x-y ;
                    if z >= y and isA002113(z) then
                        a := a+1 ;
                    end if;
                end if;
            end do:
        end do:
        return a;
    end proc:
    seq(A261132(n),n=0..80) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    pal=Select[Range[0, 1000], (d = IntegerDigits@ #; d == Reverse@ d)&]; a[n_] := Length@ IntegerPartitions[n, {3}, pal]; a /@ Range[0, 1000]
  • PARI
    A261132(n)=n||return(1); my(c=0, i=inv_A002113(n)); A2113[i] > n && i--; until( A2113[i--]*3 < n, j = inv_A002113(D = n-A2113[i]); if( j>i, j=i, A2113[j] > D && j--); while( j >= k = inv_A002113(D - A2113[j]), A2113[k] == D - A2113[j] && c++; j--||break));c \\ For efficiency, this uses an array A2113 precomputed at least up to n. - M. F. Hasler, Sep 10 2018

Formula

a(n) = Sum_{k=0..3} A319453(n,k). - Alois P. Heinz, Sep 19 2018

Extensions

Examples revised and plots for large n added by Hugo Pfoertner, Aug 11 2015

A260255 Numbers that can be written as the sum of two nonnegative palindromes in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2015

Keywords

Comments

More than the usual number of terms are shown in order to distinguish this from A261906. - N. J. A. Sloane, Sep 09 2015
A260254(a(n)) > 0.

Crossrefs

Cf. A035137 (complement), A260254, A002113.
111 is a member of this sequence but not of A261906. A213879 lists the differences.

Programs

  • Haskell
    a260255 n = a260255_list !! (n-1)
    a260255_list = filter ((> 0) . a260254) [0..]
  • Mathematica
    palQ[n_Integer, base_Integer] := Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; Take[ Union[ Plus @@@ Tuples[ Select[ Range[0, 100], palQ[#, 10] &], 2]], 90] (* Robert G. Wilson v, Jul 22 2015 *)

A260254 Number of ways to write n as sum of two palindromes in decimal representation.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2015

Keywords

Comments

a(A035137(n)) = 0; a(A260255(n)) > 0.

Examples

			.   n | a(n) |                                n | a(n) |
. ----+------+--------------------------    ----+------+--------------
.   0 |    1 |  0                            21 |    0 |  ./.
.   1 |    1 |  1                            22 |    2 |  22, 11+11
.   2 |    2 |  2, 1+1                       23 |    1 |  22+1
.   3 |    2 |  3, 2+1                       24 |    1 |  22+2
.   4 |    3 |  4, 3+1, 2+2                  25 |    1 |  22+3
.   5 |    3 |  5, 4+1, 3+2                  26 |    1 |  22+4
.   6 |    4 |  6, 5+1, 4+2, 3+3             27 |    1 |  22+5
.   7 |    4 |  7, 6+1, 5+2, 4+3             28 |    1 |  22+6
.   8 |    5 |  8, 7+1, 6+2, 5+3, 4+4        29 |    1 |  22+7
.   9 |    5 |  9, 8+1, 7+2, 6+3, 5+4        30 |    1 |  22+8
.  10 |    5 |  9+1, 8+2, 7+3, 6+4, 5+5      31 |    1 |  22+9
.  11 |    5 |  11, 9+2, 8+3, 7+4, 6+5       32 |    0 |  ./.
.  12 |    5 |  11+1, 9+3, 8+4, 7+5, 6+6     33 |    2 |  33, 22+11
.  13 |    4 |  11+2, 9+4, 8+5, 7+6          34 |    1 |  33+1
.  14 |    4 |  11+3, 9+5, 8+6, 7+7          35 |    1 |  33+2
.  15 |    3 |  11+4, 9+6, 8+7               36 |    1 |  33+3
.  16 |    3 |  11+5, 9+7, 8+8               37 |    1 |  33+4
.  17 |    2 |  11+6, 9+8                    38 |    1 |  33+5
.  18 |    2 |  11+7, 9+9                    39 |    1 |  33+6
.  19 |    1 |  11+8                         40 |    1 |  33+7
.  20 |    1 |  11+9                         41 |    1 |  33+8  .
		

Crossrefs

Programs

  • Haskell
    a260254 n = sum $ map (a136522 . (n -)) $
                   takeWhile (<= n `div` 2) a002113_list

Formula

a(n) = sum{A136522(n - A002113(k)): k = 1..floor(n/2)}.

A261675 Minimal number of palindromes in base 10 that add to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2015

Keywords

Comments

This sequence coincides with A088601 for n <= 301, but differs at n=302.
Although A088601 and this sequence agree for a large number of terms, because of their importance they warrant separate entries.
Cilleruelo and Luca prove that a(n) <= 3 (in fact they prove this for any fixed base g>=5). - Danny Rorabaugh, Feb 26 2016

Crossrefs

Programs

  • PARI
    ispal(n)=my(d=digits(n)); d==Vecrev(d);
    a(n)=my(L=n\2,d,e); if(ispal(n), return(1)); d=[1]; while((e=fromdigits(d))<=L, if(ispal(n-e), return(2)); my(k=#d,i=(k+1)\2); while(i&&d[i]==9, d[i]=0; d[k+1-i]=0; i--); if(i, d[i]++; d[k+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1)); 3; \\ Charles R Greathouse IV, Nov 12 2018

A261424 Difference between n and the largest palindrome <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2015

Keywords

Comments

Up to a(301), this is the same as the sequence b(n) = least palindrome to be subtracted from n such that the difference is again a palindrome, or 10 if no such palindrome exists. But a(302) = 10 (= 302 - 292), while b(302) = 111 is the smallest palindrome P such that 302 - P is again a palindrome, 302 - 111 = 191. Similarly, b(403) = ... = b(908) = 111. For n = 1011, 1012, ..., 1110 one has a(n) = n - 1001 = 10, 11, 12, ..., 109 while b(n) = 22, 11, 44, 55, ..., 99, b(1019) = 121, b(1020) = 101, b(1021) = 22, 33, ..., 99, b(1029) = 131, 101, 10, 33, 44, ... and so on. - M. F. Hasler, Sep 08 2015
A further sequence which starts with the same values is c(n) = n-p, where p is the largest palindrome <= n such that n-p is the sum of m-1 palindromes, where m = A261675(n) is the minimal number of palindromes that add up to n. This means that c(n) = 0 (= a(n) = b(n)) if n is a palindrome; if n is the sum of 2 palindromes, then c(n) = b(n) is the smallest palindrome such that n - c(n) is again a palindrome; if n is the sum of three palindromes, then c(n) is the smallest possible sum of two palindromes such that n - c(n) is the largest possible palindrome. The numbers with A261675(n) = 3 are listed in A035137. Here, n = 1099 is the first index for which c(n) = 100 (= 99 + 1 and 1099 - 100 = 999) differs from a(n) = n - 1001 = 98 and from b(n) = 10. - M. F. Hasler, Sep 11 2015

Crossrefs

Programs

  • Maple
    # P has list of palindromes
    palfloor:=proc(n) global P; local i;
    for i from 1 to nops(P) do
       if P[i]=n then return(n); fi;
       if P[i]>n then return(P[i-1]); fi;
    od:
    end;
    [seq(n-palfloor(n),n=0..200)];
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Table[k = n;
    While[Nand[palQ@ k, k > -1], k--]; n - k, {n, 0, 86}] (* Michael De Vlieger, Sep 09 2015 *)

Formula

a(n) = n - A261423(n). - M. F. Hasler, Sep 11 2015

A104444 Not the difference of two palindromes (where 0 is considered a palindrome).

Original entry on oeis.org

1020, 1029, 1031, 1038, 1041, 1047, 1051, 1061, 1065, 1071, 1074, 1081, 1091, 1101, 1130, 1131, 1139, 1141, 1148, 1151, 1157, 1161, 1171, 1175, 1181, 1191, 1201, 1231, 1240, 1241, 1249, 1251, 1258, 1261, 1267, 1271, 1281, 1291, 1301, 1314, 1341, 1350
Offset: 1

Views

Author

David W. Wilson, Mar 07 2005

Keywords

Crossrefs

Formula

A084843 \ A002113 (conjecture). [R. J. Mathar, Jul 23 2009]

A213879 Positive palindromes that are not the sum of two positive palindromes.

Original entry on oeis.org

1, 111, 131, 141, 151, 161, 171, 181, 191, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10301, 10401, 10501, 10601, 10701, 10801, 10901, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12021, 12121, 12321, 12421, 12521, 12621, 12721, 12821
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 23 2012

Keywords

Comments

These numbers do not occur in A035137.

Examples

			22 is not a member because 22 = 11 + 11.
		

Crossrefs

Programs

  • Maple
    # From N. J. A. Sloane, Sep 09 2015: bP is a list of the palindromes
    a:={}; M:=400; for n from 3 to M do p:=bP[n];
    # is p a sum of two palindromes?
    sw:=-1; for i from 2 to n-1 do j:=p-bP[i]; if digrev(j)=j then sw:=1; break; fi;
    od;
    if sw<0 then a:={op(a),p}; fi; od:
    b:=sort(convert(a,list));
  • Mathematica
    lst1 = {}; lst2 = {}; r = 12821; Do[If[FromDigits@Reverse@IntegerDigits[n] == n, AppendTo[lst1, n]], {n, r}]; l = Length[lst1]; Do[s = lst1[[i]] + lst1[[j]]; AppendTo[lst2, s], {i, l - 1}, {j, i}]; Complement[lst1, lst2]
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; t1 = Select[Range[12900], palQ[#] &]; Complement[t1, Union[Flatten[Table[i + j, {i, t1}, {j, t1}]]]] (* Jayanta Basu, Jun 15 2013 *)

Formula

({ A002113 } intersect { A319477 }) minus { 0 }. - Alois P. Heinz, Sep 19 2018

A319477 Nonnegative integers which cannot be obtained by adding exactly two nonzero decimal palindromes.

Original entry on oeis.org

0, 1, 21, 32, 43, 54, 65, 76, 87, 98, 111, 131, 141, 151, 161, 171, 181, 191, 201, 1031, 1041, 1042, 1051, 1052, 1053, 1061, 1062, 1063, 1064, 1071, 1072, 1073, 1074, 1075, 1081, 1082, 1083, 1084, 1085, 1086, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1099
Offset: 1

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Comments

Every integer larger than two can be obtained by adding exactly three nonzero decimal palindromes.
The nonzero palindromes of this sequence are in A213879.

Crossrefs

Cf. A002113, A035137 (allowing zero), A213879, A261131, A319453, A319468, A319586.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i (k-> b(n, h(n), k)-b(n, h(n), k-1))(2):
    a:= proc(n) option remember; local j; for j from 1+
          `if`(n=1, -1, a(n-1)) while g(j)<>0 do od; j
        end:
    seq(a(n), n=1..80);

Formula

A319468(a(n)) = 0.

A261910 Numbers n which are neither palindromes nor the sum of two palindromes, with property that subtracting the largest palindrome < n from n gives a number which is the sum of two palindromes.

Original entry on oeis.org

21, 32, 43, 54, 65, 76, 87, 98, 201, 1031, 1041, 1042, 1051, 1052, 1053, 1061, 1062, 1063, 1064, 1071, 1072, 1073, 1074, 1075, 1081, 1082, 1083, 1084, 1085, 1086, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1101, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1134, 1135, 1136, 1137, 1138, 1139, 1145, 1146, 1147, 1148, 1149, 1153
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2015

Keywords

Comments

These are the numbers with palindromic order 3 (see A261913).
More than the usual number of terms are shown in order to clarify the difference between this sequence and A035137.

Crossrefs

Showing 1-10 of 20 results. Next