A035286 Number of ways to place a non-attacking white and black king on n X n chessboard.
0, 0, 32, 156, 456, 1040, 2040, 3612, 5936, 9216, 13680, 19580, 27192, 36816, 48776, 63420, 81120, 102272, 127296, 156636, 190760, 230160, 275352, 326876, 385296, 451200, 525200, 607932, 700056, 802256, 915240, 1039740, 1176512, 1326336
Offset: 1
Examples
There are 32 ways of putting 2 distinct kings on a 3 X 3 board so that neither can capture the other. From _M. F. Hasler_, Nov 17 2021: (Start) The first nonzero term occurs for n = 3 where we have the possibilities K x O x K x x x O and x x x and rotations of these by +-90 degrees and 180 degrees, O O O O O O where 'x' are forbidden squares, and 'O' are squares the opposite king can be placed on. This yields the a(3) = 4*(5 + 3) = 32 possibilities. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^4 - 9*n^2 + 12*n - 4: n in [1..40]]; // Vincenzo Librandi, Oct 20 2013
-
Mathematica
CoefficientList[Series[4 x^2 (x^2 + x - 8)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 20 2013 *)
-
PARI
apply( {A035286(n)=n^4-9*n^2+12*n-4}, [1..99]) \\ M. F. Hasler, Nov 17 2021
Formula
a(n) = n^4 - 9 n^2 + 12 n - 4.
G.f.: x^3*(8 - x - x^2)/(1 - x)^5. - Colin Barker, Jan 09 2013
a(n) = (n - 1) (n - 2) (n^2 + 3 n - 2). - M. F. Hasler, Nov 17 2021
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) - Natalia L. Skirrow, Oct 11 2022
Comments