cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035347 Triangle of a(n,k) = number of minimal covers of an n-set that cover k points of that set uniquely (n >= 1, k >= 1).

Original entry on oeis.org

1, 0, 2, 0, 3, 5, 0, 6, 28, 15, 0, 10, 190, 210, 52, 0, 15, 1340, 3360, 1506, 203, 0, 21, 9065, 60270, 48321, 10871, 877, 0, 28, 57512, 1132880, 1820056, 636300, 80592, 4140, 0, 36, 344316, 21067452, 76834926, 45455676, 8081928, 618939, 21147, 0, 45
Offset: 1

Views

Author

Keywords

Examples

			1; 0,2; 0,3,5; 0,6,28,15; ...
		

Crossrefs

Cf. A056885 for unlabeled case. Row sums give A046165.

Programs

  • Mathematica
    a[n_, k_] := Binomial[n, k] * Sum[ StirlingS2[k, j]*(2^j - j - 1)^(n - k), {j, 1, k}]; a[n_, n_] := Sum[ StirlingS2[n, j], {j, 1, n}]; Flatten[ Table[a[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Jun 26 2012, from formula *)

Formula

a(n, k) = C(n, k)*Sum_{j=1..k} S(k, j)*(2^j-j-1)^(n-k), where S(k, j) are Stirling numbers of the second kind.
E.g.f.: Sum_{k>=1} (exp(y*x) - 1)^k/k! * exp((2^k-k-1)x). - Geoffrey Critzer, Jun 28 2013

Extensions

More terms from Vladeta Jovovic, Sep 06 2000