cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000083 Number of mixed Husimi trees with n nodes; or polygonal cacti with bridges.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 23, 63, 188, 596, 1979, 6804, 24118, 87379, 322652, 1209808, 4596158, 17657037, 68497898, 268006183, 1056597059, 4193905901, 16748682185, 67258011248, 271452424286, 1100632738565, 4481533246014, 18319020658537, 75152228262785, 309337095953934
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f.: A(x) = B(x) + C(x) - B(x)*D(x), where B, C, D respectively are g.f.s of A000237, A035349, A035350. - Christian G. Bower, Nov 15 1998

Extensions

More terms from Christian G. Bower, Nov 15 1998

A000314 Number of mixed Husimi trees with n nodes; or labeled polygonal cacti with bridges.

Original entry on oeis.org

1, 1, 1, 4, 31, 362, 5676, 111982, 2666392, 74433564, 2384579440, 86248530296, 3476794472064, 154579941792256, 7514932528712896, 396595845237540600, 22581060079942183936, 1379771773100463174608, 90059660791562688208128, 6253914166368448348512064
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then x else convert(series(x* exp((2*A(n-1) -A(n-1)^2)/ (2-2*A(n-1))),x=0,n+2), polynom) fi end: a:= n-> if n=0 then 1 else coeff(series(A(n-1), x=0,n+1), x,n)*(n-1)! fi: seq(a(n), n=0..30); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    A[n_] := A[n] = If[n <= 0, x, Normal[Series[x*Exp[(2*A[n-1]-A[n-1]^2)/ (2-2*A[n-1])], {x, 0, n+2}]]]; a[n_] := If[n == 0, 1, Coefficient [Series[A[n-1], {x, 0, n+1}], x, n]*(n-1)!]; Table [a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)

Formula

a(n) = A035351/n, n>0. - Christian G. Bower, Nov 15 1998

Extensions

More terms from Christian G. Bower, Nov 15 1998

A000237 Number of mixed Husimi trees with n nodes; or rooted polygonal cacti with bridges.

Original entry on oeis.org

0, 1, 1, 3, 8, 26, 84, 297, 1066, 3976, 15093, 58426, 229189, 910127, 3649165, 14756491, 60103220, 246357081, 1015406251, 4205873378, 17497745509, 73084575666, 306352303774, 1288328048865, 5433980577776, 22982025183983
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[0]); for(n=1, n, v=concat([0,1], EulerT(Vec(BIK(Ser(v))-1)))); v} \\ Andrew Howroyd, Aug 30 2018

Formula

Shifts left under transform T where Ta = EULER(BIK(a)). [See Transforms links.] - Christian G. Bower, Nov 15 1998

Extensions

More terms from Christian G. Bower, Nov 15 1998

A035357 Number of increasing asymmetric rooted polygonal cacti with bridges (mixed Husimi trees).

Original entry on oeis.org

1, 1, 1, 7, 39, 409, 4687, 62822, 945250, 15999616, 300150210, 6198330586, 139779046596, 3420083177362, 90241503643208, 2554721759776914, 77240614583288344, 2484170781778551036
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Formula

Shifts left under transform T where Ta = EGJ(BHJ(a)).

A035353 Number of asymmetric rooted polygonal cacti with bridges (mixed Husimi trees).

Original entry on oeis.org

0, 1, 1, 1, 3, 7, 22, 67, 215, 692, 2283, 7599, 25631, 87211, 299386, 1035059, 3602083, 12606318, 44344764, 156698081, 555989604, 1980050697, 7075365521, 25360341963, 91155701023, 328500571740, 1186656421109, 4296084607302
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Programs

  • PARI
    BHK(p)={p + (1/(1-p) - (1+p)/subst(1-p, x, x^2))/2}
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0]); for(n=1, n, v=concat([0,1], WeighT(Vec(BHK(Ser(v)))))); v} \\ Andrew Howroyd, Aug 30 2018

Formula

Shifts left under transform T where Ta = WEIGH(BHK(a)).

A035350 "BIK" (reversible, indistinct, unlabeled) transform of A000237.

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 164, 583, 2142, 8062, 30950, 120651, 476418, 1901311, 7656763, 31074151, 126963466, 521820340, 2155911512, 8948711597, 37299355151, 156054201936, 655134261795, 2758885471920, 11651193009013
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035351 Number of labeled rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 2, 12, 124, 1810, 34056, 783874, 21331136, 669902076, 23845794400, 948733833256, 41721533664768, 2009539243299328, 105209055401980544, 5948937678563109000, 361296961279074942976, 23456120142707873968336, 1621073894248128387746304
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then x else x* exp((2*A(n-1) -A(n-1)^2)/ (2-2*A(n-1))) fi end: a:= n-> coeff(series(A(n-1), x=0,n+1), x,n)*n!: seq(a(n), n=1..20); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/E^(((x-2)*x)/(2*(x-1))),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)

Formula

E.g.f. satisfies A(x) = x*exp((2*A(x)-A(x)^2)/(2-2*A(x))).
a(n) ~ (1-s)^2 * sqrt(2/((2-s)*(1+s-s^2))) * n^(n-1) / (s * exp((2+(s-4)*s)/(2-2*s)))^n, where s = 1/3*(4-2/(-17+3*sqrt(33))^(1/3) + (-17+3*sqrt(33))^(1/3)) = 0.456310987307923638429144... is the root of the equation 6*s - 4*s^2 + s^3 = 2. - Vaclav Kotesovec, Jan 08 2014

Extensions

More terms from Alois P. Heinz, Aug 20 2008

A035352 Number of increasing rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 1, 3, 16, 122, 1203, 14518, 207061, 3406083, 63465271, 1320938774, 30371545338, 764447981599, 20904838435264, 617151430504113, 19561785238965715, 662583041367287249, 23882958184429006800, 912777131398463190802, 36868849734952579404745
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Limit n->infinity (a(n)/n!)^(1/n) = 2.168573... - Vaclav Kotesovec, Feb 28 2014

Crossrefs

Programs

  • Maple
    Ap:= proc(n) option remember; local A, f; if n<=0 then f:=1 else A:= Int(Ap(n-1),x); f:= exp((2*A -A^2)/ (2-2*A)) fi; convert(series(f, x, n+1), polynom) end: a:= n-> coeff(series(Ap(n-1), x=0,n), x,n-1)*(n-1)!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Ap[n_] := Ap[n] = Module[{A, f}, If[n <= 0, f=1, A = Integrate[Ap[n-1], x]; f = Exp[(2*A-A^2)/(2-2*A)]]; Series[f, {x, 0, n+1}] // Normal]; a[n_] := SeriesCoefficient[Ap[n-1], {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

E.g.f. satisfies A'(x) = exp((2*A(x)-A(x)^2)/(2-2*A(x))).

Extensions

a(18) corrected by Alois P. Heinz, Aug 20 2008

A035354 "DHK" (bracelet, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 103, 330, 1077, 3556, 11895, 40187, 137049, 471070, 1630819, 5680854, 19899698, 70053093, 247711242, 879441789, 3133648932, 11202930544, 40172365842, 144453506494, 520759972064, 1881787195944, 6814766134276
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035355 "BHK" (reversible, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 44, 140, 442, 1443, 4751, 15903, 53716, 183334, 630513, 2184417, 7614318, 26690344, 94015908, 332639104, 1181596784, 4212424485, 15066677338, 54050993664, 194438337125, 701224890628, 2534810109024
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Showing 1-10 of 11 results. Next