A035486 Kimberling's expulsion array read by antidiagonals.
1, 2, 2, 3, 3, 4, 4, 4, 2, 6, 5, 5, 5, 2, 8, 6, 6, 6, 7, 7, 6, 7, 7, 7, 4, 9, 2, 13, 8, 8, 8, 8, 2, 11, 12, 2, 9, 9, 9, 9, 10, 9, 8, 11, 18, 10, 10, 10, 10, 6, 12, 9, 16, 17, 16, 11, 11, 11, 11, 11, 7, 14, 14, 12, 14, 23, 12, 12, 12, 12, 12, 13, 11, 6, 9, 21, 2, 13, 13, 13, 13, 13, 13, 8, 15
Offset: 1
Examples
The array starts (with elements of A007063 in brackets): [1] 2 3 4 5 6 7 8 9 10 11 12 ... 2 [3] 4 5 6 7 8 9 10 11 12 13 ... 4 2 [5] 6 7 8 9 10 11 12 13 14 ... 6 2 7 [4] 8 9 10 11 12 13 14 15 ... 8 7 9 2 [10] 6 11 12 13 14 15 16 ... 6 2 11 9 12 [7] 13 8 14 15 16 17 ... 13 12 8 9 14 11 [15] 2 16 6 17 18 ... 2 occurs as diagonal element in row 25, 27 in row 7598, and 19 in row 49595 (cf. A006852).
References
- R. K. Guy, Unsolved Problems Number Theory, Sect E35.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
- D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998.
- Enrique Pérez Herrero, Formulas and programs for Kimberling's expulsion array
- Clark Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991 and Vol. 18, March 1992, p. 82-83.
- Eric Weisstein's World of Mathematics, Kimberling Sequence
Crossrefs
Programs
-
Mathematica
K[i_, j_] := i + j - 1 /; (j >= 2 i - 3); K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3)); K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3)); K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable]; T[n_] := n*(n + 1)/2; S[n_] := Floor[1/2 (1 + Sqrt[1 + 8 (n - 1)])]; AJ[n_] := 1 + T[S[n]] - n; AI[n_] := 1 + S[n] - AJ[n]; A035486[n_] := K[AI[n], AJ[n]]; (* Enrique Pérez Herrero, Mar 30 2010 *)
-
Python
def A035486(n,k): if k >= 2*n-3: return n+k-1 q,r = divmod(k+1,2) return A035486(n-1,n-1+(1-2*r)*q) # Pontus von Brömssen, Jan 28 2023
Extensions
More terms from James Sellers, Dec 23 1999
Edited by Georg Fischer, Jul 03 2020
Comments