cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059799 Primes which when added to their reversals are squares.

Original entry on oeis.org

2, 29, 47, 83, 263, 461, 20147, 23117, 24107, 63113, 80141, 81131, 300893, 301793, 303593, 308093, 310883, 313583, 324473, 333563, 336263, 342653, 344453, 348053, 350843, 354443, 355343, 356243, 362633, 363533, 364433, 365333, 377123, 378023
Offset: 1

Views

Author

Enoch Haga, Feb 23 2001

Keywords

Comments

Idea from Carlos Rivera's The Prime Puzzles and Problems Connection, Conjecture 23.

Examples

			a(4)=263 because 263+362=625 and 625 is a square whose root is 25.
		

Crossrefs

Cf. A227371 (indices of these primes).

Programs

  • Mathematica
    Select[Prime[Range[33000]],IntegerQ[Sqrt[FromDigits[Reverse[ IntegerDigits[#]]]+ #]]&] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Add prime to its reverse. If a square, add to sequence.

A059755 Odd rare numbers: odd n such that n-r and n+r are squares, where r is the reverse of n.

Original entry on oeis.org

65, 868591084757, 6979302951885, 6157577986646405, 8052956026592517, 8052956206592517, 8650327689541457, 8650349867341457, 619431353040136925, 619631153042134925, 631688638047992345, 633288858025996145, 633488632647994145, 653488856225994125
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 11 2001

Keywords

Comments

There are 20 terms up to 10^22. - Shyam Sunder Gupta, Dec 14 2019

Examples

			65-56 = 9 and 65 + 56 = 121 are both (perfect) squares.
		

References

  • Shyam Sunder Gupta, "Systematic computations of rare numbers", The Mathematics Education, Vol. XXXII, No. 3, 1998.

Crossrefs

Cf. A035519.

A282116 Numbers k such that k-1/2*R(k) and k+1/2*R(k) are both positive squares, where R(k) is the digits reverse of k.

Original entry on oeis.org

468, 4842, 27225, 235890, 21030930, 840827745
Offset: 1

Views

Author

Paolo P. Lava, Feb 16 2017

Keywords

Comments

Similar to rare numbers A035519.
No more terms < 10^12. - Lars Blomberg, Jul 12 2017
a(7), if it exists, is larger than 2*10^15. - Giovanni Resta, Jul 14 2017

Examples

			(468 - 1/2*864)^(1/2) = (36)^(1/2) = 6  and (468 +1/2*864)^(1/2) = (900)^(1/2) = 30.
		

Crossrefs

Programs

  • Maple
    R:=proc(w) local x,y,z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q,k) local n; for n from 1 to q do
    if n>k*R(n) then if frac(sqrt(n-k*R(n)))=0 and frac(sqrt(n+k*R(n)))=0
    then print(n); fi; fi; od; end: P(10^9,1/2);

Extensions

a(6) from Lars Blomberg, Jul 12 2017

A332850 Numbers k = a^2 + b^2 such that reversal(k) = a^2 - b^2 for a > b > 0, where reversal is A004086.

Original entry on oeis.org

699796, 4854634, 6752626, 84036010, 931910661, 21584860960, 52554850525, 467170024564, 637843128736, 638730439636, 638734039636, 638943127636, 727830438745, 727834038745, 746710459825, 746754019825, 748943127625, 9894192267061, 401309596403104, 844181015028970
Offset: 1

Views

Author

Metin Sariyar, Feb 26 2020

Keywords

Comments

When b=0, the palindromic numbers m = a^2 + b^2 such that reversal(m) = a^2 - b^2, are A002779 (palindromic squares).
a(19) > 3*10^14, if it exists. - Giovanni Resta, Feb 27 2020

Examples

			699796 = 836^2 + 30^2 and 697996 = 836^2 - 30^2.
		

Crossrefs

Programs

  • Mathematica
    Do[If[IntegerReverse[a^2+b^2]==a^2-b^2,Print[{a^2+b^2,a,b}]],{a,1,50000},{b,1,a-1}]
  • PARI
    isok(k) = {my(r = fromdigits(Vecrev(digits(k))), s = r+k, d = k-r); d && !(s % 2) && issquare(s/2) && !(d % 2) && issquare(d/2); } \\ Michel Marcus, Feb 27 2020

Extensions

a(6)-a(18) from Giovanni Resta, Feb 27 2020
a(19)-a(20) from Jinyuan Wang, Apr 10 2025
Showing 1-4 of 4 results.