A035614 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1.
0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 7, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 8, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.
- N. J. A. Sloane, Classic Sequences
Programs
-
Haskell
a035614 = a122840 . a014417 . (+ 1) -- Reinhard Zumkeller, Mar 10 2013
-
Mathematica
max = 81; wy = Table[(n-k)*Fibonacci[k] + Fibonacci[k+1]*Floor[ GoldenRatio*(n - k + 1)], {n, 1, max}, {k, 1, n}]; a[n_] := Position[wy, n][[1, 2]]-1; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Nov 02 2011 *)
-
Python
from sympy import fibonacci def a122840(n): return len(str(n)) - len(str(int(str(n)[::-1]))) def a014417(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return x def a(n): return a122840(a014417(n + 1)) # Indranil Ghosh, Jun 09 2017, after Haskell code by Reinhard Zumkeller
Formula
The segment between the first M and the first M+1 is given by the segment before the first M-1.
Comments