cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035615 Number of winning length n strings with a 2-symbol alphabet in "same game".

Original entry on oeis.org

1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, 5878, 12350, 25778, 53470, 110332, 226610, 463602, 945214, 1921550, 3896642, 7885092, 15927086, 32121582, 64697726, 130166378, 261637446, 525478668, 1054673162, 2115601450, 4241716734, 8501080838, 17031744170
Offset: 0

Views

Author

Keywords

Comments

Strings that can be reduced to null string by repeatedly removing an entire run of two or more consecutive symbols.

Examples

			11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
		

Crossrefs

See A309874 for the losing strings.
For some similar questions in base 10, see A323830, A323831, A320487. - N. J. A. Sloane, Feb 04 2019
Row b=2 of A323844.

Programs

  • Mathematica
    Join[{1}, Rest[CoefficientList[Series[x (2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/((1 - x^2)(1 - 2x)(1 - x - x^2)^2), {x, 0, 40}], x]]] (* or *) Join[{1}, LinearRecurrence[{4, -2, -8, 6, 6, -3, -2}, {0, 2, 2, 6, 12, 26, 58}, 40]] (* Harvey P. Dale, Sep 26 2012 *)
  • PARI
    a(n)=if(n, ([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; -2,-3,6,6,-8,-2,4]^(n-1)*[0;2;2;6;12;26;58])[1,1], 1) \\ Charles R Greathouse IV, Jun 15 2015

Formula

G.f.: x(2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/[(1 - x^2)(1 - 2x)(1 - x - x^2)^2] (conjectured). - Ralf Stephan, May 11 2004. Established by Burns and Purcell - see link.
a(0) = 1, a(1) = 0, a(2) = 2, a(3) = 2, a(4) = 6, a(5) = 12, a(6) = 26, a(7) = 58, a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 3*a(n-6) - 2*a(n-7). - Harvey P. Dale, Sep 26 2012
a(n) = 2^n - 2 * n * Fibonacci(n-2) - (-1)^n - 1 for n >= 2 (proved by Burns and Purcell (2005, 2007)). - Petros Hadjicostas, Jul 04 2018

Extensions

More terms from Naohiro Nomoto, Jul 09 2001
Further terms from Sascha Kurz, Oct 19 2001
a(27)-a(36) from Robert Price, Apr 08 2019