A036035 Least integer of each prime signature, in graded (reflected or not) colexicographic order of exponents.
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 1296, 960, 1440, 2160
Offset: 0
Examples
1; 2; 4, 6; 8, 12, 30; 16, 24, 36, 60, 210; 32, 48, 72, 120, 180, 420, 2310; 64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030; 128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510;
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
Links
- Peter Luschny, Rows n = 0..25, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- John Baez, What happens when a particle gets created?
- OEIS Wiki, Prime signature.
Crossrefs
Programs
-
Maple
with(combinat): A036035_row := proc(n) local e, w; w := proc(e) local i, p; p := [seq(ithprime(nops(e)-i+1), i=1..nops(e))]; mul(p[i]^e[i], i=1..nops(e)) end: seq(w(conjpart(e)), e = partition(n)) end: seq(A036035_row(i), i=0..10); # Peter Luschny, Aug 01 2013
-
Mathematica
nmax = 52; primeSignature[n_] := Sort[ FactorInteger[n], #1[[2]] > #2[[2]] & ][[All, 2]]; ip[n_] := Reverse[ Sort[#]] & /@ Split[ Sort[ IntegerPartitions[n], Length[#1] < Length[#2] & ], Length[#1] == Length[#2] & ]; tip = Flatten[ Table[ip[n], {n, 0, 8}], 2]; a[n_] := (sig = tip[[n+1]]; k = 1; While[sig =!= primeSignature[k++]]; k-1); a[0] = 1; a[1] = 2; Table[an = a[n]; Print[an]; an, {n, 0, nmax}](* Jean-François Alcover, Nov 16 2011 *)
-
PARI
Row(n)={[prod(i=1, #p, prime(i)^p[#p+1-i]) | p<-partitions(n)]} \\ Andrew Howroyd, Oct 19 2020
Extensions
More terms from Alford Arnold; corrected Sep 10 2002
More terms from Ray Chandler, Jul 13 2003
Definition corrected by Daniel Forgues, Jan 16 2011
Comments