A036129 a(n) = 2^n mod 59.
1, 2, 4, 8, 16, 32, 5, 10, 20, 40, 21, 42, 25, 50, 41, 23, 46, 33, 7, 14, 28, 56, 53, 47, 35, 11, 22, 44, 29, 58, 57, 55, 51, 43, 27, 54, 49, 39, 19, 38, 17, 34, 9, 18, 36, 13, 26, 52, 45, 31, 3, 6, 12, 24, 48, 37, 15
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
GAP
List([0..70],n->PowerMod(2,n,59)); # Muniru A Asiru, Jan 30 2019
-
Magma
[Modexp(2, n, 59): n in [0..100]]; // G. C. Greubel, Oct 17 2018
-
Maple
i := pi(59) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[2, Range[0, 100], 59] (* G. C. Greubel, Oct 17 2018 *)
-
PARI
a(n)=lift(Mod(2,59)^n) \\ Charles R Greathouse IV, Mar 22 2016
Formula
a(n) = a(n+58). - R. J. Mathar, Jun 04 2016
a(n) = a(n-1) - a(n-29) + a(n-30). - G. C. Greubel, Oct 17 2018