A036137 a(n) = 5^n mod 97.
1, 5, 25, 28, 43, 21, 8, 40, 6, 30, 53, 71, 64, 29, 48, 46, 36, 83, 27, 38, 93, 77, 94, 82, 22, 13, 65, 34, 73, 74, 79, 7, 35, 78, 2, 10, 50, 56, 86, 42, 16, 80, 12, 60, 9, 45, 31, 58, 96, 92, 72, 69, 54, 76, 89, 57, 91, 67
Offset: 0
Examples
As 5^5 = 3125 = k * 97 + 21 for some k and 0 <= 21 < 97, a(5) = 21. - _David A. Corneth_, Oct 17 2018
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
Crossrefs
Cf. A000351 (5^n).
Programs
-
GAP
List([0..60],n->PowerMod(5,n,97)); # Muniru A Asiru, Oct 17 2018
-
Magma
[Modexp(5, n, 97): n in [0..100]]; // G. C. Greubel, Oct 18 2018
-
Maple
[ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[5, Range[0, 100], 97] (* G. C. Greubel, Oct 17 2018 *)
-
PARI
a(n)=lift(Mod(5,97)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Python
for n in range(0, 100): print(int(pow(5, n, 97)), end=' ') # Stefano Spezia, Oct 17 2018