A036140 a(n) = 2^n mod 107.
1, 2, 4, 8, 16, 32, 64, 21, 42, 84, 61, 15, 30, 60, 13, 26, 52, 104, 101, 95, 83, 59, 11, 22, 44, 88, 69, 31, 62, 17, 34, 68, 29, 58, 9, 18, 36, 72, 37, 74, 41, 82, 57, 7, 14, 28, 56, 5, 10, 20, 40, 80, 53, 106, 105, 103
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Crossrefs
Cf. A000079 (2^n).
Programs
-
GAP
List([0..55],n->PowerMod(2,n,107)); # Muniru A Asiru, Oct 18 2018
-
Magma
[Modexp(2, n, 107): n in [0..100]]; // G. C. Greubel, Oct 18 2018
-
Maple
[ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[2,Range[0,60],107] (* Harvey P. Dale, May 07 2013 *)
-
PARI
a(n)=lift(Mod(2,107)^n) \\ Charles R Greathouse IV, Mar 22 2016
Comments