cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036220 Expansion of 1/(1-3*x)^7; 7-fold convolution of A000244 (powers of 3).

Original entry on oeis.org

1, 21, 252, 2268, 17010, 112266, 673596, 3752892, 19702683, 98513415, 472864392, 2192371272, 9865670724, 43257171636, 185387878440, 778629089448, 3211844993973, 13036312034361, 52145248137444, 205836505805700, 802762372642230, 3096369151620030
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), this sequence (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Magma
    [3^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
  • Maple
    seq(3^n*binomial(n+6,6), n=0..20); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    Table[3^n*Binomial[n+6, 6], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
  • Sage
    [3^n*binomial(n+6,6) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 3^n*binomial(n+6, 6).
a(n) = A027465(n+7,7).
G.f.: 1/(1-3*x)^7.
E.g.f.: (1/80)*(80 + 1440*x + 5400*x^2 + 7200*x^3 + 4050*x^4 + 972*x^5 + 81*x^6)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1173/5 - 576*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 18432*log(4/3) - 26508/5. (End)