A036221 Expansion of 1/(1-3*x)^8; 8-fold convolution of A000244 (powers of 3).
1, 24, 324, 3240, 26730, 192456, 1250964, 7505784, 42220035, 225173520, 1148384952, 5637526128, 26778249108, 123591918960, 556163635320, 2447119995408, 10553204980197, 44695926974952, 186233029062300
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (24,-252,1512,-5670,13608,-20412,17496,-6561).
Crossrefs
Programs
-
Magma
[3^n*Binomial(n+7, 7): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq(3^n*binomial(n+7,7), n=0..30); # Zerinvary Lajos, Jun 23 2008
-
Mathematica
Table[3^n*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, May 19 2021 *)
-
Sage
[3^n*binomial(n+7, 7) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
Formula
a(n) = 3^n*binomial(n+7, 7).
a(n) = A027465(n+8, 8.)
G.f.: 1/(1-3*x)^8.
E.g.f.: (1/560)*(560 +11760*x +52920*x^2 +88200*x^3 +66150*x^4 +23814*x^5 +3969*x^6 +243*x^7)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1344*log(3/2) - 5439/10.
Sum_{n>=0} (-1)^n/a(n) = 86016*log(4/3) - 247443/10. (End)
Comments