A036226 Expansion of 1/(1-7*x)^7.
1, 49, 1372, 28812, 504210, 7764834, 108707676, 1413199788, 17311697403, 201969803035, 2262061793992, 24471395771368, 256949655599364, 2628792630362724, 26287926303627240, 257621677775546952
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (49, -1029, 12005, -84035, 352947, -823543, 823543).
Crossrefs
Cf. A036084.
Programs
-
Magma
[7^n* Binomial(n+6, 6): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Maple
seq(binomial(n+6,6)*7^n,n=0..16); # Zerinvary Lajos, Jun 16 2008
-
Mathematica
CoefficientList[Series[1/(1-7x)^7,{x,0,20}],x] (* or *) LinearRecurrence[ {49,-1029,12005,-84035,352947,-823543,823543},{1,49,1372,28812,504210,7764834,108707676},20] (* Harvey P. Dale, Feb 21 2013 *)
-
Sage
[lucas_number2(n, 7, 0)*binomial(n,6)/7^6 for n in range(6, 22)] # Zerinvary Lajos, Mar 13 2009
Formula
a(n) = 7^n*binomial(n+6, 6).
G.f.: 1/(1-7*x)^7.
a(n) = 49*a(n-1) - 1029*a(n-2) + 12005*a(n-3) - 84035*a(n-4) + 352947*a(n-5) - 823543*a(n-6) + 823543*a(n-7), a(0)=1, a(1)=49, a(2)=1372, a(3)=28812, a(4)=504210, a(5)=7764834, a(6)=108707676. - Harvey P. Dale, Feb 21 2013
Comments