cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036288 a(n) = 1 + integer log of n: if the prime factorization of n is n = Product (p_j^k_j) then a(n) = 1 + Sum (p_j * k_j) (cf. A001414).

Original entry on oeis.org

1, 3, 4, 5, 6, 6, 8, 7, 7, 8, 12, 8, 14, 10, 9, 9, 18, 9, 20, 10, 11, 14, 24, 10, 11, 16, 10, 12, 30, 11, 32, 11, 15, 20, 13, 11, 38, 22, 17, 12, 42, 13, 44, 16, 12, 26, 48, 12, 15, 13, 21, 18, 54, 12, 17, 14, 23, 32, 60, 13, 62, 34, 14, 13, 19, 17, 68, 22
Offset: 1

Views

Author

Keywords

Comments

If this function is iterated then, starting at any number n >= 7, we will always reach an 8 - see A212813, A212814, A212815. - N. J. A. Sloane, May 30 2012
a(n) = 1 + Sum_{k=1..A001221(n)} A027748(k) * A124010(k). - Reinhard Zumkeller, May 30 2012

Examples

			12 = 2^2 * 3 so a(12) = 1 + 2^2 + 3 = 8.
		

References

  • Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006) - From N. J. A. Sloane, May 30 2012
  • R. Honsberger, Problem 89, Another Curious Sequence, Mathematical Morsels, MAA, 1978, pp. 223-227.

Crossrefs

Programs

  • Haskell
    a036288 n = 1 + sum (zipWith (*)
                (a027748_row n) (map fromIntegral $ a124010_row n))
    -- Reinhard Zumkeller, May 30 2012
    
  • Maple
    f:=proc(n) local i,t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # N. J. A. Sloane, May 30 2012
  • Mathematica
    f[1]=1;f[n_]:=Total[Apply[Times,FactorInteger[n],1]]+1;f/@Range@68 (* Ivan N. Ianakiev, Apr 18 2016 *)
  • PARI
    A036288(n)=1+(n=factor(n))[,1]~*n[,2]  \\ M. F. Hasler, May 30 2012

Extensions

Edited by N. J. A. Sloane, Jun 01 2012