cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036290 a(n) = n*3^n.

Original entry on oeis.org

0, 3, 18, 81, 324, 1215, 4374, 15309, 52488, 177147, 590490, 1948617, 6377292, 20726199, 66961566, 215233605, 688747536, 2195382771, 6973568802, 22082967873, 69735688020, 219667417263, 690383311398, 2165293113021, 6778308875544, 21182215236075, 66088511536554, 205891132094649
Offset: 0

Views

Author

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 3n-set X into 3-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

Cf. A000244, A006234, A016578, A027471, A083679, A289399 (partial sums).

Programs

Formula

From Paul Barry, Feb 06 2004: (Start)
A trinomial transform. Differentiate (1+x+x^2)^n and set x=1.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (2*n-2*i-j)*n!/(i!*j!*(n-i-j)!). (End)
From Paul Barry, Feb 15 2005: (Start)
a(n) = Sum_{k=0..2*n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k). (End)
From R. J. Mathar, Jun 19 2011: (Start)
G.f.: 3*x/(3*x-1)^2.
a(n) = 3*A027471(n+1). (End)
Sum_{n>=1} 1/a(n) = log(3/2) = 0.405465108... = A016578. - Franz Vrabec, Jan 07 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(4/3) = A083679. - Amiram Eldar, Jul 20 2020
a(n) = 6*a(n-1) - 9*a(n-2). - Wesley Ivan Hurt, Apr 26 2021
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 3*x*exp(3*x).
a(n) = n*A000244(n). (End)