cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036296 Denominator of Sum_{i=1..n} i/2^i.

Original entry on oeis.org

1, 2, 1, 8, 8, 32, 8, 128, 128, 512, 256, 2048, 2048, 8192, 1024, 32768, 32768, 131072, 65536, 524288, 524288, 2097152, 524288, 8388608, 8388608, 33554432, 16777216, 134217728, 134217728, 536870912, 33554432, 2147483648, 2147483648, 8589934592, 4294967296
Offset: 0

Views

Author

Keywords

Comments

Sum_{i>=0} i/2^i = 2. - Alonso del Arte, Aug 15 2012

Examples

			a(4) = 8 because 1/2 + 2/4 + 3/8 + 4/16 = 1/2 + 1/2 + 3/8 + 1/4 = 1 + 5/8 = 13/8.
		

References

  • C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 95.

Crossrefs

Cf. A036295 (numerators).

Programs

  • Magma
    [1] cat [Denominator(&+[i/2^i: i in [1..n]]): n in [1..40]]; // Vincenzo Librandi, Nov 09 2014
  • Maple
    seq(denom(2-(n+2)/2^n), n=0..50); # Ridouane Oudra, Jul 16 2023
  • Mathematica
    Table[Denominator[Sum[i/2^i, {i, n}]], {n, 40}] (* Alonso del Arte, Aug 08 2012 *)
  • PARI
    concat(1, vector(100, n, denominator(sum(i=1, n, i/2^i)))) \\ Colin Barker, Nov 09 2014
    
  • PARI
    a(n) = denominator(2-(n+2)/2^n); \\ Joerg Arndt, Jul 17 2023
    

Formula

a(n) = denominator(2-(n+2)/2^n). - Sean A. Irvine, Oct 25 2020
a(n) = A000079(n)/A006519(n+2), for n>=1. - Ridouane Oudra, Jul 16 2023
Denominators of coefficients in expansion of 2*x / ((1 - x) * (2 - x)^2). - Ilya Gutkovskiy, Aug 04 2023