A036311 Composite numbers whose prime factors contain no digits other than 2 and 5.
4, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 131 terms from Vincenzo Librandi)
- Index entries for sequences related to prime factors.
Programs
-
Magma
[n: n in [4..13000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [2,5]}]; // Bruno Berselli, Aug 26 2013
-
Maple
N:= 20000: # to get all terms <= N S:= {seq(seq(2^i*5^j,i=0..ilog2(N/5^j)),j=0..floor(log[5](N)))} minus {1,2,5}: sort(convert(S,list)); # Robert Israel, Apr 29 2018
-
Mathematica
dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {2}||d == {5}||d == {2, 5})]; Select[Range[15000], dpfQ] (* Vincenzo Librandi, Aug 25 2013 *)
Formula
Sum_{n>=1} 1/a(n) = 4/5. - Amiram Eldar, May 18 2022~
Comments