A036312 Composite numbers whose prime factors contain no digits other than 2 and 7.
4, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 196, 224, 256, 343, 392, 448, 454, 512, 554, 686, 784, 896, 908, 1024, 1108, 1372, 1454, 1568, 1589, 1792, 1816, 1939, 2048, 2216, 2401, 2744, 2908, 3136, 3178, 3584, 3632, 3878, 4096, 4432, 4802, 5089, 5488
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 5340 terms from Robert Israel)
- Index entries for sequences related to prime factors.
Programs
-
Maple
dmax:= 4: # for terms < 2*10^dmax P:= {2,7}: L:= {7}: for d from 1 to dmax-1 do L:= map(t -> 2*10^d+t, L) union map(t -> 7*10^d+t, L); P:= P union select(isprime,L); od: R:= {1}: N:= 2*10^dmax: for p in P do R:= R union map(t -> seq(t*p^j,j=1..floor(log[p](N/t))), R) od: sort(convert(R minus P minus {1},list)); # Robert Israel, Aug 04 2020
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A020459} (p/(p - 1)) - Sum_{p in A020459} 1/p - 1 = 0.7041098484... . - Amiram Eldar, May 18 2022
Comments