A036313 Composite numbers whose prime factors contain no digits other than 2 and 9.
4, 8, 16, 32, 58, 64, 116, 128, 232, 256, 458, 464, 512, 841, 916, 928, 1024, 1682, 1832, 1856, 1858, 2048, 3364, 3664, 3712, 3716, 4096, 5998, 6641, 6728, 7328, 7424, 7432, 8192, 11996, 13282, 13456, 14656, 14848, 14864, 16384, 19858, 23992, 24389
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 3266 terms from Robert Israel)
- Index entries for sequences related to prime factors.
Programs
-
Maple
S[1]:= [2,9]: for d from 2 to 5 do S[d]:= map(t -> (10*t+2,10*t+9), S[d-1]) od: P29:= select(isprime, map(op,[seq(S[i],i=1..5)])): N:= 10^5: R:= {1}: for p in P29 do R:= map(t -> seq(t*p^j,j=0..floor(log[p](N/t))), R) od: R:= R minus convert(P29,set) minus {1}: sort(convert(R,list)); # Robert Israel, Jan 17 2020
-
Mathematica
pf29Q[n_]:=Module[{pfs=Union[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[1]]]]},MatchQ[pfs,{2}]||MatchQ[pfs,{9} ]||MatchQ[pfs,{2,9}]]; nn=25000;Select[Complement[Range[nn],Prime[ Range[ PrimePi[nn]]]],pf29Q] (* Harvey P. Dale, Apr 23 2012 *)
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A020460} (p/(p - 1)) - Sum_{p in A020460} 1/p - 1 = 0.5433646773... . - Amiram Eldar, May 18 2022
Comments