cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036313 Composite numbers whose prime factors contain no digits other than 2 and 9.

Original entry on oeis.org

4, 8, 16, 32, 58, 64, 116, 128, 232, 256, 458, 464, 512, 841, 916, 928, 1024, 1682, 1832, 1856, 1858, 2048, 3364, 3664, 3712, 3716, 4096, 5998, 6641, 6728, 7328, 7424, 7432, 8192, 11996, 13282, 13456, 14656, 14848, 14864, 16384, 19858, 23992, 24389
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020460. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Maple
    S[1]:= [2,9]:
    for d from 2 to 5 do S[d]:= map(t -> (10*t+2,10*t+9), S[d-1]) od:
    P29:= select(isprime, map(op,[seq(S[i],i=1..5)])):
    N:= 10^5:
    R:= {1}:
    for p in P29 do
      R:= map(t -> seq(t*p^j,j=0..floor(log[p](N/t))), R)
    od:
    R:= R minus convert(P29,set) minus {1}:
    sort(convert(R,list)); # Robert Israel, Jan 17 2020
  • Mathematica
    pf29Q[n_]:=Module[{pfs=Union[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[1]]]]},MatchQ[pfs,{2}]||MatchQ[pfs,{9} ]||MatchQ[pfs,{2,9}]]; nn=25000;Select[Complement[Range[nn],Prime[ Range[ PrimePi[nn]]]],pf29Q] (* Harvey P. Dale, Apr 23 2012 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020460} (p/(p - 1)) - Sum_{p in A020460} 1/p - 1 = 0.5433646773... . - Amiram Eldar, May 18 2022