A355048 Number of unoriented orthoplex n-ominoes with cell centers determining n-3 space.
3, 18, 122, 655, 3240, 14531, 61520, 247381, 958434, 3598594, 13180348, 47274577, 166642096, 578750970, 1984671466, 6731351834, 22612409886, 75321920403, 249028297179, 817867225710, 2670093233760, 8670380548402
Offset: 6
Examples
a(6)=3 because there are 3 hexominoes in 2^3 space. The two vacant cells share just a face, an edge, or a vertex.
Links
- Robert A. Russell, Table of n, a(n) for n = 6..100
- Robert A. Russell, Trunk Generating Functions
Crossrefs
Programs
-
Mathematica
sb[n_,k_] := sb[n,k] = b[n+1-k,1] + If[n<2k,0,sb[n-k,k]]; b[1,1] := 1; b[n_,1] := b[n,1] = Sum[b[i,1]sb[n-1,i]i,{i,1,n-1}]/(n-1); b[n_,k_] := b[n,k] = Sum[b[i,1]b[n-i,k-1],{i,1,n-1}]; nmax = 30; B[x_] := Sum[b[i,1]x^i,{i,0,nmax}] Drop[CoefficientList[Series[(14B[x]^6 + 3B[x]^7 + 6B[x]^4B[x^2] + 6B[x]^5B[x^2] + 18B[x]^2B[x^2]^2 + 3B[x]^3B[x^2]^2 + 26B[x^2]^3 + 6 B[x]B[x^2](B[x^2]^2 + B[x^4]) + 4B[x^3]^2 + 4B[x^6]) / 24 + B[x]^3 (38B[x]^4 + 9B[x]^5 + 4B[x]^2B[x^2] + 10B[x]^3B[x^2] + 2B[x^2]^2 + B[x]B[x^2]^2) / (8(1-B[x])) + B[x]^6 (16B[x]^2 + 6B[x]^3 + B[x^2] + B[x] (5 + 2B[x^2])) / (2(1-B[x])^2) + B[x]^7 (2 + 42B[x] + 51B[x]^2 + 24B[x]^3 + 3B[x^2]) / (12(1-B[x])^3) + B[x]^9 (17 + 8B[x]) / (8(1-B[x])^4) + 3B[x]^10 / (8(1-B[x])^5) + B[x^2]^2(B[x]^4 + 4B[x]^2 B[x^2] + 12B[x^2]^2 + B[x^4] + B[x] (8B[x^2] + 5B[x^2]^2 + B[x^4])) / (4(1-B[x^2])) + B[x^2]^4 (8 + 16B[x^2] + B[x] (19 + 8B[x^2])) / (8(1-B[x^2])^2) + 3(1 + B[x])B[x^2]^5 / (4(1-B[x^2])^3) + 2B[x]B[x^3]^2 / (6(1-B[x^3])) + B[x]B[x^4]^2 / (4(1-B[x^4])) + B[x]^2B[x^2]^2(5B[x]^3 + 2B[x^2] + B[x](2 + B[x^2])) / (4(1-B[x])(1-B[x^2])) + B[x]^5(1+4B[x])B[x^2]^2 / (4(1-B[x])^2(1-B[x^2])) + B[x]^6 B[x^2]^2 / (4(1-B[x])^3(1-B[x^2])) + 3B[x]^2B[x^2]^4 / (8(1-B[x])(1-B[x^2])^2) + B[x^2](1+B[x])B[x^4]^2 / (4(1-B[x^2])(1-B[x^4])), {x,0,nmax}],x],6]
Formula
G.f.: (14*B(x)^6 + 3*B(x)^7 + 6*B(x)^4*B(x^2) + 6*B(x)^5*B(x^2) + 18*B(x)^2*B(x^2)^2 + 3*B(x)^3*B(x^2)^2 + 26*B(x^2)^3 + 6*B(x)*B(x^2)*(B(x^2)^2 + B(x^4)) + 4*B(x^3)^2 + 4*B(x^6)) / 24 + B(x)^3*(38*B(x)^4 + 9*B(x)^5 + 4*B(x)^2*B(x^2) + 10*B(x)^3*B(x^2) + 2*B(x^2)^2 + B(x)*B(x^2)^2) / (8*(1-B(x))) + B(x)^6*(16*B(x)^2 + 6*B(x)^3 + B(x^2) + B(x)*(5 + 2*B(x^2))) / (2*(1-B(x))^2) + B(x)^7*(2 + 42*B(x) + 51*B(x)^2 + 24*B(x)^3 + 3*B(x^2)) / (12*(1-B(x))^3) + B(x)^9*(17 + 8*B(x)) / (8*(1-B(x))^4) + 3*B(x)^10 / (8*(1-B(x))^5) + B(x^2)^2*(B(x)^4 + 4*B(x)^2*B(x^2) + 12*B(x^2)^2 + B(x^4) + B(x)*(8*B(x^2) + 5*B(x^2)^2 + B(x^4))) / (4*(1-B(x^2))) + B(x^2)^4*(8 + 16*B(x^2) + B(x)*(19 + 8*B(x^2))) / (8*(1-B(x^2))^2) + 3*(1 + B(x))*B(x^2)^5 / (4*(1-B(x^2))^3) + 2*B(x)*B(x^3)^2 / (6*(1-B(x^3))) + B(x)*B(x^4)^2 / (4*(1-B(x^4))) + B(x)^2*B(x^2)^2*(5*B(x)^3 + 2*B(x^2) + B(x)*(2 + B(x^2))) / (4*(1-B(x))*(1-B(x^2))) + B(x)^5*(1+4*B(x))*B(x^2)^2 / (4*(1-B(x))^2*(1-B(x^2))) + B(x)^6*B(x^2)^2 / (4*(1-B(x))^3*(1-B(x^2))) + 3*B(x)^2*B(x^2)^4 / (8*(1-B(x))*(1-B(x^2))^2) + B(x^2)*(1+B(x))*B(x^4)^2 / (4*(1-B(x^2))*(1-B(x^4))), where B(x) is the generating function for rooted trees with n nodes in A000081.
Comments