A036370 Triangle of coefficients of generating function of ternary rooted trees of height at most n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 4, 7, 12, 20, 31, 47, 70, 99, 137, 184, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1
Offset: 0
Examples
1; 1, 1; 1, 1, 1, 1, 1; 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1; ...
Links
Crossrefs
Cf. A036437.
Programs
-
Maple
T:= proc(n) option remember; local f, g; if n=0 then 1 else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)])); g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3)); seq(coeff(g, z, i), i=0..degree(g, z)) fi end: seq(T(n), n=0..5); # Alois P. Heinz, Sep 26 2011
-
Mathematica
T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
Formula
T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1.