cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036370 Triangle of coefficients of generating function of ternary rooted trees of height at most n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 4, 7, 12, 20, 31, 47, 70, 99, 137, 184, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

Keywords

Examples

			1;
1, 1;
1, 1, 1, 1, 1;
1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1;
...
		

Crossrefs

Cf. A036437.

Programs

  • Maple
    T:= proc(n) option remember; local f, g;
          if n=0 then 1
        else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
             g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
             seq(coeff(g, z, i), i=0..degree(g, z))
          fi
        end:
    seq(T(n), n=0..5); # Alois P. Heinz, Sep 26 2011
  • Mathematica
    T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] = Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table[Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

T_{i+1}(z) = 1 +z*(T_i(z)^3/6 +T_i(z^2)*T_i(z)/2 +T_i(z^3)/3); T_0(z) = 1.