cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A036437 Triangle of coefficients of generating function of ternary rooted trees of height exactly n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 3, 8, 15, 27, 43, 67, 97, 136, 183, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1, 1, 4, 13, 32, 74, 155, 316, 612, 1160, 2126, 3829, 6737
Offset: 1

Views

Author

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

Keywords

Examples

			1;
1, 1, 1;
1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;
		

Programs

  • Maple
    df:= (t, l)-> zip((x,y)->x-y, t, l, 0):
    T:= proc(n) option remember; local f, g;
          if n=0 then 1
        else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
             g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
             seq(coeff(g, z, i), i=0..degree(g, z))
          fi
        end:
    seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # Alois P. Heinz, Sep 26 2011
  • Mathematica
    df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)

Formula

T_{n}(z) - T_{n-1}(z) (see A036370).

A036373 Number of ternary rooted trees with n nodes and height at most 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 33, 63, 121, 225, 415, 749, 1344, 2365, 4129, 7106, 12104, 20354, 33883, 55706, 90628, 145729, 231801, 364555, 567206, 872727, 1328545, 2000536, 2980554, 4393287, 6407683, 9246830, 13204526, 18657905, 26088244
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036373 = T[5] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A036374 Number of ternary rooted trees with n nodes and height at most 6.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 38, 82, 177, 376, 789, 1638, 3376, 6894, 13987, 28181, 56424, 112282, 222171, 437098, 855311, 1664755, 3223402, 6209505, 11901967, 22700056, 43083657, 81376732, 152971812, 286199220, 532954482, 987861697, 1822655134
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036374 = T[6] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A036375 Number of ternary rooted trees with n nodes and height at most 7.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 88, 203, 464, 1056, 2381, 5344, 11900, 26381, 58165, 127713, 279209, 608213, 1319985, 2855275, 6155981, 13231553, 28353787, 60583959, 129084369, 274283708, 581244959, 1228514486, 2589902750, 5446168197
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036375 = T[7] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A036372 Number of ternary rooted trees with n nodes and height at most 4.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 12, 20, 31, 47, 70, 99, 137, 184, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036372 = T[4] (*Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A036376 Number of ternary rooted trees with n nodes and height at most 8.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 89, 210, 498, 1185, 2813, 6664, 15707, 36886, 86259, 201003, 466788, 1080825, 2495565, 5747664, 13206253, 30276788, 69267205, 158155198, 360422113, 819873747, 1861732042, 4220347570, 9551287776
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036376 = T[8][[1 ;; 40]] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A287211 The number of plane rooted complete ternary trees with 2n+1 unlabeled leaves (hence n internal nodes including the root where n starts at 0) satisfying these two conditions: (1) if one of the three children of any internal node is the greatest in deglex order then that child is not the leftmost child; (2) if one of the three children of any internal node is the smallest in deglex order then that child is not the rightmost child. Deglex order refers to degree-lexicographical order defined inductively on the number of leaves (see details under Comments).

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 308, 1264, 5332, 22994, 100896, 449004
Offset: 0

Views

Author

Murray R. Bremner, May 21 2017

Keywords

Comments

"Plane" means "embedded in the plane" or (equivalently) the three children of each internal node (including the root) are ordered left, middle, right. Deglex order on trees with 2n+1 leaves is defined as follows: to compare two such trees T and U with children T_1, T_2, T_3 and U_1, U_2, U_3, first find the least index 1 <= i <= 3 for T_i <> U_i, then compare T_i and U_i in deglex order already defined inductively on trees with fewer than 2n+1 leaves; note that this requires comparing trees with different numbers of leaves, so we say that T_i precedes U_i if either (i) T_i has fewer leaves than U_i, or (ii) T_i and U_i have the same number of leaves, and T_i precedes U_i in deglex order.
An alternative description of this sequence: it counts the distinct association types in arity 2n+1 for a ternary operation [a,b,c] satisfying the cyclic-sum relation [a,b,c] + [b,c,a] + [c,a,b] = 0. The two conditions stated under "Name" are necessary to deal with the possibility of repeated factors: [a,a,b], [a,b,a], [b,a,a] where a < b in deglex order, and [a,b,b], [b,a,b], [b,b,a] where a < b in deglex order.
See further details in the comments to the Maple program which is attached as a a-file.

Examples

			Association types for arities 1, 3, 5, 7 are as follows in deglex order. See Links for a-file with association types for arities up to 11.
Arity 1, number of types 1:
a.
Arity 3, number of types 1:
[abc].
Arity 5, number of types 2:
[ab[cde]],
[a[bcd]e].
Arity 7, number of types 6:
[ab[cd[efg]]],
[ab[c[def]g]],
[a[bcd][efg]],
[a[bc[def]]g],
[a[b[cde]f]g],
[[abc]d[efg]].
		

Crossrefs

Programs

  • Maple
    See attached a-file under Links.

A036371 Number of ternary rooted trees with n nodes and height at most 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Cf. A036370.

Programs

  • Mathematica
    T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036371 = T[3] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)

Formula

If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.

A036420 Number of ternary rooted trees with n nodes and height exactly 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 13, 32, 74, 155, 316, 612, 1160, 2126, 3829, 6737, 11672, 19856, 33332, 55112, 90014, 145105, 231200, 363985, 566692, 872274, 1328167, 2000224, 2980316, 4393106, 6407555, 9246741, 13204470, 18657868, 26088224, 36095090
Offset: 0

Views

Author

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Formula

a(n) = A036373(n) - A036372(n). - Sean A. Irvine, Oct 31 2020

A036421 Number of ternary rooted trees with n nodes and height exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 19, 56, 151, 374, 889, 2032, 4529, 9858, 21075, 44320, 91928, 188288, 381392, 764683, 1519026, 2991601, 5844950, 11334761, 21827329, 41755112, 79376196, 149991258, 281805933, 526546799, 978614867, 1809450608
Offset: 0

Views

Author

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

Keywords

Crossrefs

Formula

a(n) = A036374(n) - A036373(n). - Sean A. Irvine, Oct 31 2020
Showing 1-10 of 18 results. Next