A036373 Number of ternary rooted trees with n nodes and height at most 5.
1, 1, 1, 2, 4, 8, 16, 33, 63, 121, 225, 415, 749, 1344, 2365, 4129, 7106, 12104, 20354, 33883, 55706, 90628, 145729, 231801, 364555, 567206, 872727, 1328545, 2000536, 2980554, 4393287, 6407683, 9246830, 13204526, 18657905, 26088244
Offset: 0
Links
Crossrefs
Cf. A036370.
Programs
-
Mathematica
T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036373 = T[5] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)
Formula
If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.