cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036410 G.f.: (1+x^6)/((1-x)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 15, 17, 19, 22, 25, 27, 31, 34, 37, 41, 45, 48, 53, 57, 61, 66, 71, 75, 81, 86, 91, 97, 103, 108, 115, 121, 127, 134, 141, 147, 155, 162, 169, 177, 185, 192, 201, 209, 217, 226, 235, 243, 253, 262, 271, 281
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + ... - _Michael Somos_, Dec 16 2021
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Ceiling[(n + 1)^2/12]; (* Michael Somos, Dec 16 2021 *)
  • Maxima
    makelist(coeff(taylor((1+x^6)/((1-x)*(1-x^3)*(1-x^4)),x,0,n),x,n),n,0,57);  /* Bruno Berselli, May 30 2011 */
    
  • PARI
    {a(n) = (n^2 + 2*n)\12 + 1}; /* Michael Somos, Dec 16 2021 */

Formula

a(n) = ceiling((n+1)^2/12).
From R. J. Mathar, Jan 22 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
G.f.: ( -1-x^4+x^2 ) / ( (1+x)*(1+x+x^2)*(x-1)^3 ). (End)
From R. J. Mathar, Jan 14 2021: (Start)
a(n) - a(n-1) = A008612(n).
Empirical: a(n) + a(n+1) = A266542(n).
72*a(n) = 6*n^2 + 12*n + 47 + 9*(-1)^n + 16*A061347(n+1). (End)
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 16 2021