cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175831 Partial sums of ceiling(n^2/12).

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 11, 16, 22, 29, 38, 49, 61, 76, 93, 112, 134, 159, 186, 217, 251, 288, 329, 374, 422, 475, 532, 593, 659, 730, 805, 886, 972, 1063, 1160, 1263, 1371, 1486, 1607, 1734, 1868, 2009, 2156, 2311, 2473, 2642, 2819, 3004, 3196, 3397, 3606
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A036410.
There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24).

Examples

			a(12) = 0 + 1 + 1 + 1 + 2 + 3 + 3 + 5 + 6 + 7 + 9 + 11 + 12 = 61.
		

Crossrefs

Cf. A036410.

Programs

  • Magma
    [Round((2*n+1)*(2*n^2+2*n+41)/144): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
    
  • Maple
    seq(floor((n+1)*(2*n^2+n+41)/72),n=0..50)
  • Mathematica
    Accumulate[Ceiling[Range[0,50]^2/12]] (* or *) LinearRecurrence[{2,0,-1,-1,0,2,-1},{0,1,2,3,5,8,11},60] (* Harvey P. Dale, Apr 16 2023 *)
  • PARI
    a(n)=(n+1)*(2*n^2+n+41)\72 \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n) = round((2*n+1)*(2*n^2 + 2*n + 41)/144).
a(n) = floor((n+1)*(2*n^2 + n + 41)/72).
a(n) = ceiling((2*n^3 + 3*n^2 + 42*n)/72).
a(n) = a(n-12) + (n+1)*(n-12) + 61.
G.f.: x*(1-x^2+x^4) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Jun 22 2011

A340445 Number of partitions of n into 3 parts that are not all the same.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26, 30, 33, 36, 40, 44, 47, 52, 56, 60, 65, 70, 74, 80, 85, 90, 96, 102, 107, 114, 120, 126, 133, 140, 146, 154, 161, 168, 176, 184, 191, 200, 208, 216, 225, 234, 242, 252, 261, 270, 280, 290, 299, 310, 320, 330
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 07 2021

Keywords

Comments

Conjecturally the same as A230059 (apart from the offset). - R. J. Mathar, Jan 14 2021

Examples

			a(6) = 2; [4,1,1], [3,2,1] ( [2,2,2] not counted ),
a(7) = 4; [5,1,1], [4,2,1], [3,3,1], [3,2,2],
a(8) = 5; [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2],
a(9) = 6; [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2] ( [3,3,3] not counted ).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[i, k, n - i - k]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 0, 80}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i = n-i-k]), where [ ] is the (generalized) Iverson bracket.
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i] * [2*i = n-k] * [2*k = n-i]), where [ ] is the Iverson bracket.
From Alois P. Heinz, Jan 07 2021: (Start)
G.f.: x^4*(x^2-x-1)/((x+1)*(x^2+x+1)*(x-1)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), n>6. (End)
a(n) = A036410(n-1)-1. - Hugo Pfoertner, Jan 09 2021
a(n) + A079978(n) = A069905(n), n>0. - R. J. Mathar, Jan 18 2021
72*a(n) = -16*A099837(n+3) -9*(-1)^n +6*n^2 -31. - R. J. Mathar, Jun 09 2022
Showing 1-2 of 2 results.