cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A036438 Integers which can be written as m*tau(m) for some m, where tau = A000005.

Original entry on oeis.org

1, 4, 6, 10, 12, 14, 22, 24, 26, 27, 32, 34, 38, 40, 46, 56, 58, 60, 62, 72, 74, 75, 80, 82, 84, 86, 88, 94, 104, 106, 108, 118, 120, 122, 132, 134, 136, 140, 142, 146, 147, 152, 156, 158, 166, 168, 178, 184, 192, 194, 202, 204, 206, 214, 218, 220, 226, 228, 232
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR concept formation program.

Examples

			10 = 5 * tau(5).
		

Crossrefs

Range of A038040.

Programs

  • Mathematica
    q[k_] := AnyTrue[Divisors[k], # * DivisorSigma[0, #] == k &]; Select[Range[250], q] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    isok(n) = {for (k=1, n, if (k*numdiv(k) == n, return (1));); return (0);} \\ Michel Marcus, Dec 09 2014
    
  • PARI
    up_to = 65536;
    A036438list(up_to) = { my(v=vector(up_to), m = Map()); for(n=1,#v,mapput(m,n*numdiv(n),n)); my(k=0,u=0); while((k<#v)&&(u<#v), u++; if(mapisdefined(m,u), k++; v[k] = u)); vector(k,i,v[i]); };
    v036438 = A036438list(up_to);
    A036438(n) = v036438[n]; \\ Antti Karttunen, Jul 18 2020

A096335 Number of iterations of n -> n + tau(n) needed for the trajectory of n to join the trajectory of A064491, or -1 if the two trajectories never merge.

Original entry on oeis.org

0, 0, 2, 0, 1, 3, 0, 1, 0, 2, 8, 0, 7, 1, 6, 5, 6, 0, 5, 3, 4, 3, 4, 0, 3, 2, 13, 2, 13, 1, 12, 0, 11, 1, 10, 8, 10, 0, 9, 7, 9, 0, 8, 1, 7, 1, 8, 6, 7, 0, 6, 6, 6, 5, 5, 0, 4, 5, 4, 26, 3, 4, 2, 0, 2, 3, 2, 3, 1, 2, 0, 25, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 39, 24, 38
Offset: 1

Views

Author

Jason Earls, Jun 28 2004

Keywords

Comments

Conjecture: For any positive integer starting value n, iterations of n -> n + tau(n) will eventually join A064491 (verified for all n up to 50000).
The graph looks like a forest of stalks. The tops of the stalks form A036434. - N. J. A. Sloane, Jan 17 2013

Examples

			a(6)=3 because the trajectory for 1 (sequence A064491) starts
1->2->4->7->9->12->18->24->32->38->42...
and the trajectory for 6 starts
6->10->14->18->24->32->38->42->50->56...
so the sequence beginning with 6 joins A064491 after 3 steps.
		

References

  • Claudia Spiro, Problem proposed at West Coast Number Theory Meeting, 1977. - From N. J. A. Sloane, Jan 11 2013

Crossrefs

Programs

  • Mathematica
    s = 1; t = Join[{s}, Table[s = s + DivisorSigma[0, s], {n, 2, 1000}]]; mx = Max[t]; Table[r = n; gen = 0; While[r < mx && ! MemberQ[t, r], gen++; r = r + DivisorSigma[0, r]]; If[r >= mx, gen = -1]; gen, {n, 100}] (* T. D. Noe, Jan 13 2013 *)

Extensions

Escape clause added to definition by N. J. A. Sloane, Nov 09 2020

A348093 Numbers k >= 1 such that there is no pair (x,y) such that x - d(x) = k or y + d(y) = k, where d = A000005 = number of divisors.

Original entry on oeis.org

8, 20, 36, 40, 67, 68, 79, 88, 100, 116, 117, 131, 132, 134, 140, 156, 164, 167, 180, 185, 196, 204, 228, 244, 252, 268, 276, 284, 300, 308, 312, 321, 324, 341, 348, 370, 372, 379, 388, 401, 405, 408, 420, 425, 436, 439, 453, 460, 476, 479
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 29 2021

Keywords

Comments

Numbers k >= 1 such that A060990(k) + A036431(k) = 0.

Examples

			k = 8 is a term: there are no x,y such that x - d(x) = 8, y + d(y) = 8.
		

Crossrefs

Intersection of A036434 and A045765.

Programs

  • Mathematica
    With[{max = 480}, Complement[Range[max], Select[Union[Flatten[Table[n + DivisorSigma[0, n]*{-1, 1}, {n, 1, max + 2 + 2*Ceiling[Sqrt[2*max+4]]}]]], # <= max &]]] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    okp(k) = sum(i=1, k, i+numdiv(i) == k) == 0;
    okm(k) = sum(i=1, 2*k+2, i-numdiv(i) == k) == 0;
    isok(k) = okp(k) && okm(k); \\ Michel Marcus, Oct 01 2021
Showing 1-3 of 3 results.