A036499 Numbers of the form k*(k+1)/6 for k = 2 or 3 modulo 6.
1, 2, 12, 15, 35, 40, 70, 77, 117, 126, 176, 187, 247, 260, 330, 345, 425, 442, 532, 551, 651, 672, 782, 805, 925, 950, 1080, 1107, 1247, 1276, 1426, 1457, 1617, 1650, 1820, 1855, 2035, 2072, 2262, 2301, 2501, 2542, 2752, 2795, 3015, 3060, 3290, 3337, 3577, 3626
Offset: 1
References
- Eberhard Freitag and Rolf Busam, Funktionentheorie 1, Springer, Vierte Auflage, 2006, p. 410.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(3*n*n-5*n+2)/2+(2*n-1)*(n mod 2): n in [1..50]]; // Vincenzo Librandi, Jan 19 2016
-
Maple
seq(seq((6*k+i)*(6*k+i+1)/6,i=2..3),k=0..50); # Robert Israel, Jan 18 2016
-
Mathematica
Table[ 1/8*(3 + (-1)^k - 6*k)*(1 + (-1)^k - 2*k), {k, 64} ] LinearRecurrence[{1,2,-2,-1,1},{1,2,12,15,35},50] (* or *) CoefficientList[Series[(1+x+8x^2+x^3+x^4)/((1-x)^3(1+x)^2),{x,0,100}],x] (* or *) Table[(2n+1)(3n+{1,2}),{n,0,24}]//Flatten (* Ray Chandler, Dec 09 2011 *)
-
PARI
a(n)=n*(3*n-5)/2+1+n%2*(2*n-1) \\ Charles R Greathouse IV, Dec 08 2011
Formula
a(n) = (3*n*n-5*n+2)/2 + (2*n-1)*(n mod 2). - Frank Ellermann, Mar 16 2002
G.f.: (1+x+8*x^2+x^3+x^4)/((1-x)^3*(1+x)^2). - Ray Chandler, Dec 09 2011
Bisection: a(2*k+1) = A001318(1+4*k) = (2*k+1)*(3*k+1) = A033570(k), a(2*(k+1)) = A001318(2+4*k) = (2*k+1)*(3*k+2) = A033568(k+1), k >= 0. - Wolfdieter Lang, Jan 18 2016
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(3) - 4*log(2). (End)
Extensions
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001
Edited by Ray Chandler, Dec 09 2011
Comments