cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036499 Numbers of the form k*(k+1)/6 for k = 2 or 3 modulo 6.

Original entry on oeis.org

1, 2, 12, 15, 35, 40, 70, 77, 117, 126, 176, 187, 247, 260, 330, 345, 425, 442, 532, 551, 651, 672, 782, 805, 925, 950, 1080, 1107, 1247, 1276, 1426, 1457, 1617, 1650, 1820, 1855, 2035, 2072, 2262, 2301, 2501, 2542, 2752, 2795, 3015, 3060, 3290, 3337, 3577, 3626
Offset: 1

Views

Author

Keywords

Comments

Numbers with an odd number of partitions with an extra odd partition; coefficient of z^p in Product_{n >= 1}(1-z^n) has coefficient (-1).
n such that the number of partitions of n into distinct parts with an odd number of parts exceed by 1 the number of partitions of n into distinct parts with an even number of parts. [Euler's 1754/55 pentagonal number theorem, see, e.g., the Freitag-Busam reference (in German). This reference is from Wolfdieter Lang, Jan 18 2016]
In formal power series, A010815=(product(1-x^k),k>0), ranks of coefficients -1. (A001318=ranks of nonzero (1 or -1) in A010815=ranks of odds terms in A000009).
Quasipolynomial of order 2. - Charles R Greathouse IV, Dec 08 2011
Union of A033568 and A033570. - Ray Chandler, Dec 09 2011

References

  • Eberhard Freitag and Rolf Busam, Funktionentheorie 1, Springer, Vierte Auflage, 2006, p. 410.

Crossrefs

Programs

  • Magma
    [(3*n*n-5*n+2)/2+(2*n-1)*(n mod 2): n in [1..50]]; // Vincenzo Librandi, Jan 19 2016
  • Maple
    seq(seq((6*k+i)*(6*k+i+1)/6,i=2..3),k=0..50); # Robert Israel, Jan 18 2016
  • Mathematica
    Table[ 1/8*(3 + (-1)^k - 6*k)*(1 + (-1)^k - 2*k), {k, 64} ]
    LinearRecurrence[{1,2,-2,-1,1},{1,2,12,15,35},50] (* or *)
    CoefficientList[Series[(1+x+8x^2+x^3+x^4)/((1-x)^3(1+x)^2),{x,0,100}],x] (* or *)
    Table[(2n+1)(3n+{1,2}),{n,0,24}]//Flatten (* Ray Chandler, Dec 09 2011 *)
  • PARI
    a(n)=n*(3*n-5)/2+1+n%2*(2*n-1) \\ Charles R Greathouse IV, Dec 08 2011
    

Formula

a(n) = (3*n*n-5*n+2)/2 + (2*n-1)*(n mod 2). - Frank Ellermann, Mar 16 2002
G.f.: (1+x+8*x^2+x^3+x^4)/((1-x)^3*(1+x)^2). - Ray Chandler, Dec 09 2011
Bisection: a(2*k+1) = A001318(1+4*k) = (2*k+1)*(3*k+1) = A033570(k), a(2*(k+1)) = A001318(2+4*k) = (2*k+1)*(3*k+2) = A033568(k+1), k >= 0. - Wolfdieter Lang, Jan 18 2016
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(3) - 4*log(2). (End)

Extensions

Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Feb 12 2001
Edited by Ray Chandler, Dec 09 2011