A036503
Denominator of n^(n-2)/n!.
Original entry on oeis.org
1, 2, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1
1, 1/2, 1/2, 2/3, 25/24, 9/5, 2401/720, 2048/315, 59049/4480, 15625/567, 214358881/3628800, ...
-
[Denominator(n^(n - 2)/Factorial(n)): n in [1..50]]; // G. C. Greubel, Nov 14 2017
-
Denominator[Table[n^(n - 2)/n!, {n, 1, 50}]] (* G. C. Greubel, Nov 14 2017 *)
-
for(n=1, 50, print1(denominator(n^(n-2)/n!), ", ")) \\ G. C. Greubel, Nov 14 2017
A227831
Numerators of coefficients in Taylor series for LambertW(x).
Original entry on oeis.org
0, 1, -1, 3, -8, 125, -54, 16807, -16384, 531441, -156250, 2357947691, -2985984, 1792160394037, -7909306972, 320361328125, -35184372088832, 2862423051509815793, -5083731656658, 5480386857784802185939, -32000000000000000, 41209797661291758429, -244636361793658185164
Offset: 0
0, 1, -1, 3/2, -8/3, 125/24, -54/5, 16807/720, -16384/315, 531441/4480, -156250/567, 2357947691/3628800, -2985984/1925, ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 34.
-
series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
-
Numerator[CoefficientList[Series[LambertW[x], {x, 0, 22}], x]] (* Mats Granvik, Nov 24 2013 *)
Numerator[CoefficientList[InverseSeries[Series[x/Sum[((-x)^n)/Factorial[n], {n, 0, 22}], {x, 0, 22}]], x]] (* Mats Granvik, Nov 24 2013 *)
A036502
Numerator of n^(n-2)/n!.
Original entry on oeis.org
1, 1, 1, 2, 25, 9, 2401, 2048, 59049, 15625, 214358881, 248832, 137858491849, 564950498, 21357421875, 2199023255552, 168377826559400929, 282429536481, 288441413567621167681, 1600000000000000, 1962371317204369449, 11119834626984462962
Offset: 1
1, 1/2, 1/2, 2/3, 25/24, 9/5, 2401/720, 2048/315, 59049/4480, 15625/567, 214358881/3628800, ...
Showing 1-3 of 3 results.
Comments