cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A090878 Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.

Original entry on oeis.org

2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
Offset: 1

Views

Author

Robert G. Wilson v, Feb 13 2004

Keywords

Comments

Also numerators of e_n(n) where e_n(x) is the exponential sum function exp_n(x) and where denominators are given by either A095996 (largest divisor of n! that is coprime to n) or A036503 (denominator of n^(n-2)/n!). - Gerald McGarvey, Nov 14 2005
a(n) is a multiple of A120266(n) or equals A120266(n), A120266(n) is numerator of Sum_{k=0..n} n^k/k!, the integral = (n-1)!/n^(n-1) * the Sum. - Gerald McGarvey, Apr 17 2008
The integral = (1/n^n)*A063170[n] (Schenker sums with n-th term, Integral_{x>0} exp(-x)*(n+x)^n dx). - Gerald McGarvey, Apr 17 2008
Expected value in the birthday paradox problem. Let X be a random variable that assigns to each f:{1,2,...,n+1}->{1,2,...,n} the smallest k in {2,3,...,n+1} such that f(k)=f(j) for some j < k. a(n)/A036505(offset=1) = E(X) the expected value of X. For n=365 E(X) is (surprising low) approximately 24. - Geoffrey Critzer, May 18 2013
Also numerator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. N. J. A. Sloane, Jul 31 2013

Crossrefs

Denominators are in A036505.

Programs

  • Magma
    [Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
    Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* G. C. Greubel, Feb 08 2019 *)
  • PARI
    vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
    
  • Sage
    [numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019

Formula

a(n) = A036505(n-1)*Sum_{k=0..n} (A128433(n)/A128434(n)). - Reinhard Zumkeller, Mar 03 2007

Extensions

Definition corrected by Gerald McGarvey, Apr 17 2008

A095996 a(n) = largest divisor of n! that is coprime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1

Views

Author

Robert G. Wilson v, Jul 19 2004, based on a suggestion from Leroy Quet, Jun 18 2004

Keywords

Comments

The denominators of the coefficients in Taylor series for LambertW(x) are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ..., which is this sequence prefixed by 1. (Cf. A227831.) - N. J. A. Sloane, Aug 02 2013
The second Mathematica program is faster than the first for large n. - T. D. Noe, Sep 07 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).

Crossrefs

Programs

  • Magma
    [Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
  • Mathematica
    f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}]
    Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *)
    Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
  • Maxima
    a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n);
    makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
    
  • PARI
    a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017

Formula

a(p) = (p-1)!.
a(n) = n!/A051696(n) = (n-1)!/A062763(n).
a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013
a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014

A036505 Numerator of (n+1)^n/n!.

Original entry on oeis.org

1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
Offset: 0

Views

Author

Keywords

Comments

Also denominator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. - N. J. A. Sloane, Jul 31 2013

Crossrefs

Cf. A095996 (denominators).

Programs

  • GAP
    List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
    
  • Magma
    [Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
    
  • Maple
    a:=n -> numer((n+1)^n/factorial(n)):  A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
  • Mathematica
    CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
  • PARI
    my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
    
  • Sage
    [numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019

Formula

a(n) = A090878(n+1)/Sum_{k=0..n+1} (A128433(n+1)/A128434(n+1)). - Reinhard Zumkeller, Mar 03 2007
G.f.: -x*e^(-LambertW(-x))/((LambertW(-x)+1)*LambertW(-x)). - Vladimir Kruchinin, Feb 04 2013
A simpler g.f. is 1/(1 + LambertW(-x)). - Jean-François Alcover, Feb 04 2013

A036504 Numerator of n^(n-1)/n!.

Original entry on oeis.org

1, 1, 3, 8, 125, 54, 16807, 16384, 531441, 156250, 2357947691, 2985984, 1792160394037, 7909306972, 320361328125, 35184372088832, 2862423051509815793, 5083731656658, 5480386857784802185939, 32000000000000000, 41209797661291758429
Offset: 1

Views

Author

Keywords

Comments

(-1)^(n+1)* n-th numerator of coefficient in LambertW(x) power series, where LambertW(x) is the transcendental function satisfying LambertW(x)*exp( LambertW(x) )=x. - Benoit Cloitre, May 08 2002

Crossrefs

Cf. A036503 (denominators).
A095996 is a better version of the denominators of the LambertW function. - N. J. A. Sloane, Jan 08 2021

Programs

  • Magma
    [Numerator(n^(n-1)/Factorial(n)): n in [1..30]]; // G. C. Greubel, Sep 09 2018
    
  • Mathematica
    Numerator[Table[n^(n - 1)/n!, {n, 1, 30}]] (* G. C. Greubel, Sep 09 2018 *)
    CoefficientList[-LambertW[-x]/x + O[x]^21, x] // Numerator (* Jean-François Alcover, Jan 15 2019 *)
  • PARI
    for(n=1, 30, print1(numerator(n^(n-1)/n!), ", ")) \\ G. C. Greubel, Sep 09 2018
    
  • Sage
    [numerator(n^(n-1)/factorial(n)) for n in (1..30)] # G. C. Greubel, Feb 08 2019

A227831 Numerators of coefficients in Taylor series for LambertW(x).

Original entry on oeis.org

0, 1, -1, 3, -8, 125, -54, 16807, -16384, 531441, -156250, 2357947691, -2985984, 1792160394037, -7909306972, 320361328125, -35184372088832, 2862423051509815793, -5083731656658, 5480386857784802185939, -32000000000000000, 41209797661291758429, -244636361793658185164
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2013

Keywords

Comments

The denominators are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ..., which is A095996 prefixed by 1.

Examples

			0, 1, -1, 3/2, -8/3, 125/24, -54/5, 16807/720, -16384/315, 531441/4480, -156250/567, 2357947691/3628800, -2985984/1925, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 34.

Crossrefs

Cf. A095996. See also A036504/A036503.

Programs

  • Maple
    series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
  • Mathematica
    Numerator[CoefficientList[Series[LambertW[x], {x, 0, 22}], x]] (* Mats Granvik, Nov 24 2013 *)
    Numerator[CoefficientList[InverseSeries[Series[x/Sum[((-x)^n)/Factorial[n], {n, 0, 22}], {x, 0, 22}]], x]] (* Mats Granvik, Nov 24 2013 *)

Formula

Numerators of series reversion of x/(Sum_{n=0..infinity} ((-x)^n)/n!). - Mats Granvik, Nov 24 2013

A036502 Numerator of n^(n-2)/n!.

Original entry on oeis.org

1, 1, 1, 2, 25, 9, 2401, 2048, 59049, 15625, 214358881, 248832, 137858491849, 564950498, 21357421875, 2199023255552, 168377826559400929, 282429536481, 288441413567621167681, 1600000000000000, 1962371317204369449, 11119834626984462962
Offset: 1

Views

Author

Keywords

Examples

			1, 1/2, 1/2, 2/3, 25/24, 9/5, 2401/720, 2048/315, 59049/4480, 15625/567, 214358881/3628800, ...
		

Crossrefs

Showing 1-6 of 6 results.