A090878
Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
Original entry on oeis.org
2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
Offset: 1
-
[Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
-
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* G. C. Greubel, Feb 08 2019 *)
-
vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
-
[numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
A095996
a(n) = largest divisor of n! that is coprime to n.
Original entry on oeis.org
1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).
-
[Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
-
series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
-
f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}]
Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *)
Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
-
a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n);
makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
-
a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017
A036505
Numerator of (n+1)^n/n!.
Original entry on oeis.org
1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
Offset: 0
-
List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
-
[Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
-
a:=n -> numer((n+1)^n/factorial(n)): A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
-
CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
-
my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
-
[numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019
A036504
Numerator of n^(n-1)/n!.
Original entry on oeis.org
1, 1, 3, 8, 125, 54, 16807, 16384, 531441, 156250, 2357947691, 2985984, 1792160394037, 7909306972, 320361328125, 35184372088832, 2862423051509815793, 5083731656658, 5480386857784802185939, 32000000000000000, 41209797661291758429
Offset: 1
-
[Numerator(n^(n-1)/Factorial(n)): n in [1..30]]; // G. C. Greubel, Sep 09 2018
-
Numerator[Table[n^(n - 1)/n!, {n, 1, 30}]] (* G. C. Greubel, Sep 09 2018 *)
CoefficientList[-LambertW[-x]/x + O[x]^21, x] // Numerator (* Jean-François Alcover, Jan 15 2019 *)
-
for(n=1, 30, print1(numerator(n^(n-1)/n!), ", ")) \\ G. C. Greubel, Sep 09 2018
-
[numerator(n^(n-1)/factorial(n)) for n in (1..30)] # G. C. Greubel, Feb 08 2019
A227831
Numerators of coefficients in Taylor series for LambertW(x).
Original entry on oeis.org
0, 1, -1, 3, -8, 125, -54, 16807, -16384, 531441, -156250, 2357947691, -2985984, 1792160394037, -7909306972, 320361328125, -35184372088832, 2862423051509815793, -5083731656658, 5480386857784802185939, -32000000000000000, 41209797661291758429, -244636361793658185164
Offset: 0
0, 1, -1, 3/2, -8/3, 125/24, -54/5, 16807/720, -16384/315, 531441/4480, -156250/567, 2357947691/3628800, -2985984/1925, ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 34.
-
series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
-
Numerator[CoefficientList[Series[LambertW[x], {x, 0, 22}], x]] (* Mats Granvik, Nov 24 2013 *)
Numerator[CoefficientList[InverseSeries[Series[x/Sum[((-x)^n)/Factorial[n], {n, 0, 22}], {x, 0, 22}]], x]] (* Mats Granvik, Nov 24 2013 *)
A036502
Numerator of n^(n-2)/n!.
Original entry on oeis.org
1, 1, 1, 2, 25, 9, 2401, 2048, 59049, 15625, 214358881, 248832, 137858491849, 564950498, 21357421875, 2199023255552, 168377826559400929, 282429536481, 288441413567621167681, 1600000000000000, 1962371317204369449, 11119834626984462962
Offset: 1
1, 1/2, 1/2, 2/3, 25/24, 9/5, 2401/720, 2048/315, 59049/4480, 15625/567, 214358881/3628800, ...
Showing 1-6 of 6 results.
Comments