A036507
Smallest square containing exactly n decimal digits '0'.
Original entry on oeis.org
0, 100, 102400, 10000, 10240000, 1000000, 1024000000, 100000000, 102400000000, 10000000000, 10240000000000, 1000000000000, 1024000000000000, 100000000000000, 102400000000000000, 10000000000000000, 10240000000000000000, 1000000000000000000, 1024000000000000000000
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 4*10^6, i++, n0 = Count[IntegerDigits[i^2], 0];
If[nsmall[[n0]] > i^2, nsmall[[n0]] = i^2]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
a[n_] := If[OddQ[n], 1024*10^(n-1), 10^n]; a[1] = 0; Array[a, 20] (* Amiram Eldar, Aug 26 2025 *)
A036535
Smallest cube containing exactly n 8's.
Original entry on oeis.org
0, 8, 74088, 778688, 82881856, 835896888, 13858588808, 4862885368888, 148388768680888, 18861880880549888, 8228852188683588288, 28918668584888698888, 2888985884683248888875, 88474488708885888872808, 8889858696418898888882863, 8808698038888853888858648
Offset: 0
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 8];
If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 21 2020 *)
A048353
a(n)^2 is the smallest square containing exactly n 8's.
Original entry on oeis.org
9, 83, 298, 1378, 8878, 29641, 298141, 623609, 9321378, 28072917, 94121667, 329877083, 4341484641, 29478276559, 62360956378, 151284113141, 3436394751609, 9428037062872, 22065558748622, 29770520349641, 942808510191167, 9427024391927083, 22335822988837615, 94270265131105359, 298125621993127083
Offset: 1
-
a[n_] := Module[{i = 1}, While[DigitCount[i^2][[8]] != n, i++ ]; i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 22 2006 *)
A137434
a(n) = smallest square containing n copies of the same nonzero digit.
Original entry on oeis.org
1, 121, 1444, 44944, 6441444, 47444544, 4434494464, 44424414441, 1113111511681, 22222220262025, 444431244445444, 22292262226224225, 441544444344443449, 1113101111111117041, 2222222222222640225, 11111119101145491111121
Offset: 1
a(9) = 1113111511681 because there is no smaller square number with 9 copies of the same nonzero digit. a(9) has 9 1's.
Showing 1-4 of 4 results.
Comments