A036535
Smallest cube containing exactly n 8's.
Original entry on oeis.org
0, 8, 74088, 778688, 82881856, 835896888, 13858588808, 4862885368888, 148388768680888, 18861880880549888, 8228852188683588288, 28918668584888698888, 2888985884683248888875, 88474488708885888872808, 8889858696418898888882863, 8808698038888853888858648
Offset: 0
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 8];
If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 21 2020 *)
A048363
a(n) is the index of the smallest triangular number containing exactly n 8's.
Original entry on oeis.org
7, 87, 312, 1287, 10572, 81103, 397212, 881912, 5270652, 7601169, 134021535, 421518419, 1402775027, 4204494972, 42305694389, 397212509427, 1943649189427, 6130065071251, 76024844477168, 98844816642745, 1333325833012312, 6069248534849827, 13303299356842428, 191199837283345112, 1084811955030810572
Offset: 1
Cf.
A036525,
A048353,
A048355,
A048356,
A048357,
A048358,
A048359,
A048360,
A048361,
A048362,
A048364,
A048545.
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 8];
If[nsmall[[n0]] > i, nsmall[[n0]] = i]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036515
Smallest square containing exactly n 8's.
Original entry on oeis.org
81, 6889, 88804, 1898884, 78818884, 878588881, 88888055881, 388888184881, 86888087818884, 788088668888889, 8858888198858889, 108818889888588889, 18848488888038898881, 868968788888888880481, 3888888880378818878884, 22886882888858888885881
Offset: 1
-
a[n_] := Block[{k=1}, While[DigitCount[k^2, 10, 8] != n, k++]; k^2]; Array[a, 6] (* Giovanni Resta, Jul 27 2018 *)
Showing 1-3 of 3 results.
Comments