A036537 Numbers whose number of divisors is a power of 2.
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1
Keywords
Examples
383, 384, 385, 386 have 2, 16, 8, 4 divisors, respectively, so they are consecutive terms of this sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, S-exponential numbers, Acta Arithm., 175(2016), 385-395.
- Eric Weisstein's World of Mathematics, Square Part, Squarefree Part
Crossrefs
The closure of the squarefree numbers under application of A355038(.) and lcm.
Programs
-
Haskell
a036537 n = a036537_list !! (n-1) a036537_list = filter ((== 1) . a209229 . a000005) [1..] -- Reinhard Zumkeller, Nov 15 2012
-
Mathematica
bi[ x_ ] := 1-Sign[ N[ Log[ 2, x ], 5 ]-Floor[ N[ Log[ 2, x ], 5 ] ] ]; ld[ x_ ] := Length[ Divisors[ x ] ]; Flatten[ Position[ Table[ bi[ ld[ x ] ], {x, 1, m} ], 1 ] ] Select[Range[110],IntegerQ[Log[2,DivisorSigma[0,#]]]&] (* Harvey P. Dale, Nov 20 2016 *)
-
PARI
is(n)=n=numdiv(n);n>>valuation(n,2)==1 \\ Charles R Greathouse IV, Mar 27 2013
-
PARI
isok(m) = issquarefree(m) || (omega(m) == omega(core(m)) && isok(core(m,1)[2])); \\ Peter Munn, Jun 18 2022
-
Python
from itertools import count, islice from sympy import factorint def A036537_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:all(map(lambda m:not((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1))) A036537_list = list(islice(A036537_gen(),30)) # Chai Wah Wu, Jan 04 2023
Formula
a(n) << n. - Charles R Greathouse IV, Feb 25 2017
Comments