cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036543 a(n) = T(3,n), array T given by A048471.

Original entry on oeis.org

1, 9, 33, 105, 321, 969, 2913, 8745, 26241, 78729, 236193, 708585, 2125761, 6377289, 19131873, 57395625, 172186881, 516560649, 1549681953, 4649045865, 13947137601, 41841412809, 125524238433, 376572715305, 1129718145921
Offset: 0

Views

Author

Keywords

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is 2^(n+2) for n=1, 2, 3, ...
Cf. A146541 (inv. bin. transf.)

Programs

  • Magma
    [4*3^n-3: n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
    
  • Mathematica
    4*3^Range[0,25]-3 (* or *) LinearRecurrence[{4,-3},{1,9},25] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    vector(30, n, n--; 4*3^n-3) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [4*3^n-3 for n in range(30)] # G. C. Greubel, Nov 23 2018

Formula

Binomial transform of A084242. Second binomial transform of periodic sequence A010688. - Paul Barry, May 23 2003
From Paul Barry, May 23 2003: (Start)
a(n) = 4*3^n - 3;
G.f.: (1+5*x)/((1-x)*(1-3*x));
E.g.f.: 4*exp(3*x) - 3*exp(x). (End)
a(n) = 4*a(n-1) - 3*a(n-2); a(0)=1, a(1)=9. - Harvey P. Dale, Aug 16 2011
a(n) = 3*a(n-1) + 6. - Vincenzo Librandi, Nov 11 2011
a(n) = A171498(n) - 2. - Philippe Deléham, Apr 13 2013