A036572 Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.
3, 6, 10, 14, 19, 24, 30, 36, 43, 50, 58, 66, 75, 84, 94, 104, 115, 126, 138, 150, 163, 176, 190, 204, 219, 234, 250, 266, 283, 300, 318, 336, 355, 374, 394, 414, 435, 456, 478, 500, 523, 546, 570, 594, 619, 644, 670, 696, 723, 750, 778, 806
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- J. A. De Loera, F. Santos and F. Takeuchi, Extremal properties of optimal dissections of convex polytopes, SIAM Journal Discrete Mathematics, 14, 2001, 143-161.
- M. Develin, Maximal triangulations of a regular prism
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A036573.
Programs
-
Magma
[Ceiling((n*n+6*n-16)/4): n in [3..60]]; // Vincenzo Librandi, Oct 21 2013
-
Mathematica
CoefficientList[Series[(2 x^2 - 3)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 21 2013 *) LinearRecurrence[{2,0,-2,1},{3,6,10,14},60] (* Harvey P. Dale, Jun 05 2017 *)
-
PARI
Vec(x^3*(2*x^2-3)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 05 2013
Formula
a(n) = ceiling((n*n + 6*n - 16)/4) = A004116(n) - 3. - Ralf Stephan, Oct 13 2003
From Colin Barker, Sep 05 2013: (Start)
a(n) = (-31 - (-1)^n + 12*n + 2*n^2)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x^3*(2*x^2-3) / ((x-1)^3*(x+1)). (End)
Extensions
More terms from Ralf Stephan, Oct 13 2003