A036585 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1
Offset: 1
Keywords
References
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a036585 n = a036585_list !! (n-1) a036585_list = 3 : concat (map f a036585_list) where f 1 = [1,2,3]; f 2 = [1,3]; f 3 = [2] -- Reinhard Zumkeller, Oct 31 2012
-
Mathematica
Differences[ThueMorse[Range[0, 100]]] + 2 (* Paolo Xausa, Oct 25 2024 *)
-
PARI
a(n)=if(n<1 || valuation(n,2)%2,2,2-(-1)^subst(Pol(binary(n)),x,1))
-
Python
def A036585(n): return 2+(n.bit_count()&1)-((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023
Comments