cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001969 Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.

Original entry on oeis.org

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000069 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres païens.
Theorem: First differences give A036585. (Observed by Franklin T. Adams-Watters.)
Proof from Max Alekseyev, Aug 30 2006 (edited by N. J. A. Sloane, Jan 05 2021): (Start)
Observe that if the last bit of a(n) is deleted, we get the nonnegative numbers 0, 1, 2, 3, ... in order.
The last bit in a(n+1) is 1 iff the number of bits in n is odd, that is, iff A010060(n+1) is 1.
So, taking into account the different offsets here and in A010060, we have a(n) = 2*(n-1) + A010060(n-1).
Therefore the first differences of the present sequence equal 2 + first differences of A010060, which equals A036585. QED (End)
Integers k such that A010060(k-1)=0. - Benoit Cloitre, Nov 15 2003
Indices of zeros in the Thue-Morse sequence A010060 shifted by 1. - Tanya Khovanova, Feb 13 2009
Conjecture, checked up to 10^6: a(n) is also the sequence of numbers k representable as k = ror(x) XOR rol(x) (for some integer x) where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. - Alex Ratushnyak, May 14 2016
From Charlie Neder, Oct 07 2018: (Start)
Conjecture is true: ror(x) and rol(x) have an even number of 1 bits in total (= 2 * A000120(x)), and XOR preserves the parity of this total, so the resulting number must have an even number of 1 bits. An x can be constructed corresponding to a(n) like so:
If the number of bits in a(n) is even, add a leading 0 so a(n) is 2k+1 bits long.
Do an inverse shuffle on a(n), then "divide" by 11, rotate the result k bits to the right, and shuffle to get x. (End)
Numbers of the form m XOR (2*m) for some m >= 0. - Rémy Sigrist, Feb 07 2021
The terms "evil numbers" and "odious numbers" were coined by Richard K. Guy, c. 1976 (Haque and Shallit, 2016) and appeared in the book by Berlekamp et al. (Vol. 1, 1st ed., 1982). - Amiram Eldar, Jun 08 2021

References

  • Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, 2nd ed., A K Peters, 2001, chapter 14, p. 110.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • Donald J. Newman, A Problem Seminar, Springer; see Problem #89.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (Russian).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A000069 (the odious numbers). Cf. A133009.
a(n)=2*n+A010060(n)=A000069(n)-(-1)^A010060(n). Cf. A018900.
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Cf. A036585 (differences), A010060, A006364.
For primes see A027699, also A130593.

Programs

  • Haskell
    a001969 n = a001969_list !! (n-1)
    a001969_list = [x | x <- [0..], even $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n : n in [0..129] | IsEven(&+Intseq(n,2)) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i from 0 while jA001969 := n->t1[n]; # s(k) gives first k terms.
    # Alternative:
    seq(`if`(add(k, k=convert(n,base,2))::even, n, NULL), n=0..129); # Peter Luschny, Jan 15 2021
    # alternative for use outside this sequence
    isA001969 := proc(n)
        add(d,d=convert(n,base,2)) ;
        type(%,'even') ;
    end proc:
    A001969 := proc(n)
        option remember ;
        local a;
        if n = 0 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001969(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A001969(n),n=1..200) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    Select[Range[0,300], EvenQ[DigitCount[ #, 2][[1]]] &]
    a[ n_] := If[ n < 1, 0, With[{m = n - 1}, 2 m + Mod[-Total@IntegerDigits[m, 2], 2]]]; (* Michael Somos, Jun 09 2019 *)
  • PARI
    a(n)=n-=1; 2*n+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n,-a((n-1)/2)+3*n))
    
  • PARI
    a(n)=2*(n-1)+hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    def ok(n): return bin(n)[2:].count('1') % 2 == 0
    print(list(filter(ok, range(130)))) # Michael S. Branicky, Jun 02 2021
    
  • Python
    from itertools import chain, count, islice
    def A001969_gen(): # generator of terms
        return chain((0,),chain.from_iterable((sorted(n^ n<<1 for n in range(2**l,2**(l+1))) for l in count(0))))
    A001969_list = list(islice(A001969_gen(),30)) # Chai Wah Wu, Jun 29 2022
    
  • Python
    def A001969(n): return ((m:=n-1).bit_count()&1)+(m<<1) # Chai Wah Wu, Mar 03 2023

Formula

a(n+1) - A001285(n) = 2n-1 has been verified for n <= 400. - John W. Layman, May 16 2003 [This can be directly verified by comparing Ralf Stephan's formulas for this sequence (see below) and for A001285. - Jianing Song, Nov 04 2024]
Note that 2n+1 is in the sequence iff 2n is not and so this sequence has asymptotic density 1/2. - Franklin T. Adams-Watters, Aug 23 2006
a(n) = (1/2) * (4n - 3 - (-1)^A000120(n-1)). - Ralf Stephan, Sep 14 2003
G.f.: Sum_{k>=0} (t(3+2t+3t^2)/(1-t^2)^2) * Product_{l=0..k-1} (1-x^(2^l)), where t = x^2^k. - Ralf Stephan, Mar 25 2004
a(2*n+1) + a(2*n) = A017101(n-1) = 8*n-5.
a(2*n) - a(2*n-1) gives the Thue-Morse sequence (3, 1 version): 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, .... A001969(n) + A000069(n) = A016813(n-1) = 4*n-3. - Philippe Deléham, Feb 04 2004
a(1) = 0; for n > 1: a(n) = 3*n-3 - a(n/2) if n even, a(n) = a((n+1)/2)+n-1 if n odd.
Let b(n) = 1 if sum of digits of n is even, -1 if it is odd; then Shallit (1985) showed that Product_{n>=0} ((2n+1)/(2n+2))^b(n) = 1/sqrt(2).
a(n) = 2n - 2 + A010060(n-1). - Franklin T. Adams-Watters, Aug 28 2006
A005590(a(n-1)) <= 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n-1)) = 1. - Reinhard Zumkeller, Apr 29 2012
a(n) = (a(n-1) + 2) XOR A010060(a(n-1) + 2). - Falk Hüffner, Jan 21 2022
a(n+1) = A006068(n) XOR (2*A006068(n)). - Rémy Sigrist, Apr 14 2022

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu)

A007413 A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.

Original entry on oeis.org

1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n)=2 if and only if n-1 is in A079523. - Benoit Cloitre, Mar 10 2003
Partial sums modulo 4 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... - Philippe Deléham, Mar 04 2004
To construct the sequence: start with 1 and concatenate 4 -1 = 3: 1, 3, then change the last term (2 -> 1, 3 ->2 ) gives 1, 2. Concatenate 1, 2 with 4 -1 = 3, 4 - 2 = 2: 1, 2, 3, 2 and change the last term: 1, 2, 3, 1. Concatenate 1, 2, 3, 1 with 4 - 1 = 3, 4 - 2 = 2, 4 - 3 = 1, 4 - 1 = 3: 1, 2, 3, 1, 3, 2, 1, 3 and change the last term: 1, 2, 3, 1, 3, 2, 1, 2 etc. - Philippe Deléham, Mar 04 2004
To construct the sequence: start with the Thue-Morse sequence A010060 = 0, 1, 1, 0, 1, 0, 0, 1, ... Then change 0 -> 1, 2, 3, and 1 -> 3, 2, 1, gives: 1, 2, 3, , 3, 2, 1, ,3, 2, 1, , 1, 2, 3, , 3, 2, 1, , ... and fill in the successive holes with the successive terms of the sequence itself. - _Philippe Deléham, Mar 04 2004
To construct the sequence: to insert the number 2 between the A003156(k)-th term and the (1 + A003156(k))-th term of the sequence 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ... - Philippe Deléham, Mar 04 2004
Conjecture. The sequence is formed by the numbers of 1's between every pair of consecutive 2's in A076826. - Vladimir Shevelev, May 31 2009

Examples

			Here are the first 5 stages in the construction of this sequence, together with Mma code, taken from Keranen's article. His alphabet is a,b,c rather than 1,2,3.
productions = {"a" -> "abc ", "b" -> "ac ", "c" -> "b ", " " -> ""};
NestList[g, "a", 5] // TableForm
a
abc
abc ac b
abc ac b abc b ac
abc ac b abc b ac abc ac b ac abc b
abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc b abc ac b ac
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.

Crossrefs

First differences of A000069.
Equals A036580(n-1) + 1.

Programs

  • Mathematica
    Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 3}, 3 -> {2}}] &, {1}, 7] (* Robert G. Wilson v, May 07 2005 *)
    2 - Differences[ThueMorse[Range[0, 100]]] (* Paolo Xausa, Oct 25 2024 *)
  • PARI
    {a(n) = if( n<1 || valuation(n, 2)%2, 2, 2 + (-1)^subst( Pol(binary(n)), x,1))};
    
  • Python
    def A007413(n): return 2-(n.bit_count()&1)+((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023

Formula

a(n) modulo 2 = A035263(n). a(A036554(n)) = 2. a(A003159(n)) = 1 if n odd. a(A003159(n)) = 3 if n even. a(n) = A033485(n) mod 4. a(n) = 4 - A036585(n-1). - Philippe Deléham, Mar 04 2004
a(n) = 2 - A029883(n) = 3 - A036577(n). - Philippe Deléham, Mar 20 2004
For n>=1, we have: 1) a(A108269(n))=A010684(n-1); 2) a(A079523(n))=A010684(n-1); 3) a(A081706(2n))=A010684(n). - Vladimir Shevelev, Jun 22 2009

A036577 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.

Original entry on oeis.org

2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Number of 1's between successive 0's in A010060.
The infinite sequence is abcacbabcbac... which is encoded with a->2, b->1, c->0 to produce this integer sequence.
From Jeffrey Shallit, Dec 07 2019: (Start)
This word is sometimes called 'vtm'; see, for example, see the Blanchet-Sadri et al. reference.
It is a squarefree word containing no instances of the factor 010 or 212 (or cbc, aba in the encoding).
Berstel proved many different definitions (e.g., Braunholtz, Istrail) of the word are equivalent. (End)

Examples

			2*x + x^2 + 2*x^4 + x^6 + 2*x^7 + x^8 + x^10 + 2*x^11 + 2*x^13 + x^14 + ...
		

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.

Crossrefs

See A007413, A036580 for other versions.

Programs

  • Mathematica
    (* ThueMorse is built-in since version 10.2, for lower versions it needs to be defined manually *) ThueMorse[n_] := Mod[DigitCount[n, 2, 1], 2]; Table[1 + ThueMorse[n] - ThueMorse[n-1], {n, 1, 100}]  (* Vladimir Reshetnikov, May 17 2016 *)
    Nest[Flatten[# /. {2 -> {2, 1, 0}, 1 -> {2, 0}, 0 -> {1}}] &, {2, 1, 0}, 7] (* Robert G. Wilson v, Jul 30 2018 *)
    Differences[ThueMorse[Range[0, 100]]] + 1 (* Paolo Xausa, Jul 17 2025 *)
  • PARI
    {a(n) = if( n<1, 0, if( valuation( n, 2)%2, 1, 1 - (-1)^subst( Pol( binary(n)), x, 1)))} /* Michael Somos, Aug 03 2011 */
    
  • Python
    def A036577(n): return (n.bit_count()&1)+((n-1).bit_count()&1^1) # Chai Wah Wu, Mar 03 2023

Formula

a(n) = A036585(n) - 1 = A029883(n) + 1.
a(n) = 3 - A007413(n). a(A036554(n)) = 1; a(A091785(n)) = 0; a(A091855(n)) = 2. - Philippe Deléham, Mar 20 2004
a(4*n + 2) = 1. a(2*n + 1) = 2 * A010059(n). a(4*n + 3) = 2 * A010060(n). - Michael Somos, Aug 03 2011
a(n) = A010060(2*n - 1) + A010060(2*n) = A115384(2*n) - A115384(2*n - 2). - Zhuorui He, Jul 11 2025

A091855 Odious numbers (see A000069) in A003159.

Original entry on oeis.org

1, 4, 7, 11, 13, 16, 19, 21, 25, 28, 31, 35, 37, 41, 44, 47, 49, 52, 55, 59, 61, 64, 67, 69, 73, 76, 79, 81, 84, 87, 91, 93, 97, 100, 103, 107, 109, 112, 115, 117, 121, 124, 127, 131, 133, 137, 140, 143, 145, 148, 151, 155, 157, 161, 164, 167, 171, 173, 176, 179, 181
Offset: 1

Views

Author

Philippe Deléham, Mar 16 2004

Keywords

Comments

Also n such that A033485(n) == 1 (mod 4); see A007413.
Also n such that A029883(n-1) = 1, A036577(n-1) = 2, A036585(n-1) = 3. - Philippe Deléham, Mar 25 2004
The number of odd numbers before the n-th even number in this sequence is a(n). - Philippe Deléham, Mar 27 2004
Numbers n such that {A010060(n-1), A010060(n)}={0,1} where A010060 is the Thue-Morse sequence. - Benoit Cloitre, Jun 16 2006
Positive integers not of the form n+A010060(n). - Jeffrey Shallit, Feb 13 2024

Programs

Formula

a(n) = A003159(2n-1) = A036554(2n-1)/2.
a(n) is asymptotic to 3*n - Benoit Cloitre, Mar 22 2004
A050292(a(n)) = 2n - 1. - Philippe Deléham, Mar 26 2004

Extensions

More terms from Benoit Cloitre, Mar 22 2004

A029883 First differences of Thue-Morse sequence A001285.

Original entry on oeis.org

1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, 0, -1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also first differences of {0,1} Thue-Morse sequence A010060.- N. J. A. Sloane, Jan 05 2021
Fixed point of the morphism a->abc, b->ac, c->b, with a = 1, b = 0, c = -1, starting with a(1) = 1. - Philippe Deléham
From Thomas Anton, Sep 22 2020: (Start)
This sequence, interpreted as an infinite word, is squarefree.
Let & represent concatenation. For a word w of integers, let -w be the same word with each symbol negated. Then, starting with the empty word, this sequence can be obtained by iteratively applying the transformation T(w) = w & 1 & -w & 0 & -w & -1 & w. (End)

Crossrefs

Apart from signs, same as A035263. Cf. A001285, A010060, A036554, A091785, A091855.
a(n+1) = A036577(n) - 1 = A036585(n) - 2.

Programs

  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {0 -> {1, -1}, 1 -> {1, 0, -1}, -1 -> {0}})]}], {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
    ThueMorse /@ Range[0, 105] // Differences (* Jean-François Alcover, Oct 15 2019 *)
  • PARI
    a(n)=if(n<1||valuation(n,2)%2,0,-(-1)^subst(Pol(binary(n)),x,1)) /* Michael Somos, Jul 08 2004 */
    
  • PARI
    a(n)=hammingweight(n)%2-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    def A029883(n): return (bin(n).count('1')&1)-(bin(n-1).count('1')&1) # Chai Wah Wu, Mar 03 2023

Formula

Recurrence: a(4*n) = a(n), a(4*n+1) = a(2*n+1), a(4*n+2) = 0, a(4*n+3) = -a(2*n+1), starting a(1) = 1.
a(n) = 2 - A007413(n). a(A036554(n)) = 0; a(A091785(n)) = -1; a(A091855(n)) = 1. - Philippe Deléham, Mar 20 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v+w+u^2-v^2+2*w^2-2*u*w. - Michael Somos, Jul 08 2004

Extensions

Edited by Ralf Stephan, Dec 09 2004

A003156 A self-generating sequence (see Comments for definition).

Original entry on oeis.org

1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 33, 36, 37, 38, 41, 44, 47, 48, 49, 52, 55, 58, 59, 60, 63, 64, 65, 68, 69, 70, 73, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 97, 100, 101, 102, 105, 106, 107, 110, 111, 112, 115, 118, 121, 122, 123, 126, 129, 132
Offset: 1

Views

Author

Keywords

Comments

From N. J. A. Sloane, Dec 26 2020: (Start)
The best definitions of the triple [this sequence, A003157, A003158] are as the rows a(n), b(n), c(n) of the table:
n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
a: 1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, ...
b: 3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, ...
c: 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, ...
where a(1)=1, b(1)=3, c(1)=2, and thereafter
a(n) = mex{a(i), b(i), c(i), i
b(n) = a(n) + 2*n,
c(n) = b(n) - 1.
Then a,b,c form a partition of the positive integers.
Note that there is another triple of sequences (A003144, A003145, A003146) also called a, b, c and also a partition of the positive integers, in a different paper by the same authors (Carlitz-Scovelle-Hoggatt) in the same volume of the same journal.
(End)
a(n) is the number of ones before the n-th zero in the Feigenbaum sequence A035263. - Philippe Deléham, Mar 27 2004
Number of odd numbers before the n-th even number in A007413, A007913, A001511, A029883, A033485, A035263, A036585, A065882, A065883, A088172, A092412. - Philippe Deléham, Apr 03 2004
Indices of a in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    following Deléham
    a003156 n = a003156_list !! (n-1)
    a003156_list = scanl1 (+) a080426_list
    -- Reinhard Zumkeller, Oct 27 2014
    
  • Maple
    a:= proc(n) global l; while nops(l) [1, 3$d, 1][], l) od; `if` (n=1, 1, a(n-1) +l[n]) end: l:= [1]: seq (a(n), n=1..80); # Alois P. Heinz, Oct 31 2009
  • Mathematica
    Position[Nest[Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 7], 0] // Flatten (* Jean-François Alcover, Mar 14 2014 *)
  • Python
    def A003156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-n # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n) - n + 1 = A003157(n) - 2n = A003158(n) - 2n + 1. - Philippe Deléham, Feb 28 2004
a(n) = A036554(n) - n = A072939(n) - n - 1 = 2*A003159(n) - n. - Philippe Deléham, Apr 10 2004
a(n) = Sum_{k = 1..n} A080426(k). - Philippe Deléham, Apr 16 2004

Extensions

More terms from Alois P. Heinz, Oct 31 2009
Incorrect equation removed from formula by Peter Munn, Dec 11 2020

A091785 Evil numbers (see A001969) in A003159.

Original entry on oeis.org

3, 5, 9, 12, 15, 17, 20, 23, 27, 29, 33, 36, 39, 43, 45, 48, 51, 53, 57, 60, 63, 65, 68, 71, 75, 77, 80, 83, 85, 89, 92, 95, 99, 101, 105, 108, 111, 113, 116, 119, 123, 125, 129, 132, 135, 139, 141, 144, 147, 149, 153, 156, 159, 163, 165, 169, 172, 175, 177, 180, 183
Offset: 1

Author

Philippe Deléham, Mar 16 2004

Keywords

Comments

Also n such that A033485(n) == 3 (mod 4); see A007413.
Also n such that A029883(n-1) = -1, A036577(n-1) = 0, A036585(n-1) = 1. - Philippe Deléham, Mar 25 2004
The number of odd numbers before the n-th even number in this sequence is a(n). - Philippe Deléham, Mar 27 2004
Numbers n such that {A010060(n-1), A010060(n)}={1,0} where A010060 is the Thue-Morse sequence. - Benoit Cloitre, Jun 16 2006

Programs

Formula

a(n) = A003159(2*n) = A036554(2*n)/2.
a(n) is asymptotic to 3*n. - Benoit Cloitre, Mar 22 2004
A050292(a(n)) = 2n. - Philippe Deléham, Mar 26 2004

Extensions

More terms from Benoit Cloitre, Mar 22 2004

A036578 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.

Original entry on oeis.org

1, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2
Offset: 0

Keywords

Comments

Trajectory of 1 under the morphism 0 -> 12, 1 -> 102 & 2 -> 0. - Robert G. Wilson v, Apr 06 2008

References

  • Brian Hayes, Group Theory in the Bedroom and other Mathematical Diversions, Hill and Wang, A division of Farrar, Straus and Giroux, NY, 2008, pages 190-194.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.

Programs

  • Mathematica
    Nest[ # /. {0 -> {1, 2}, 1 -> {1, 0, 2}, 2 -> {0}} &, {0}, 7] // Flatten (* Robert G. Wilson v, Apr 06 2008 *)
Showing 1-8 of 8 results.