A036740 a(n) = (n!)^n.
1, 1, 4, 216, 331776, 24883200000, 139314069504000000, 82606411253903523840000000, 6984964247141514123629140377600000000, 109110688415571316480344899355894085582848000000000, 395940866122425193243875570782668457763038822400000000000000000000
Offset: 0
References
- Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., 2004, p. 207.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- Christian Krattenthaler, Advanced determinant calculus, in: D. Foata and G. N. Han (eds.), The Andrews Festschrift, Springer, Berlin, Heidelberg, 2001, pp. 349-426; arXiv preprint, arXiv:math/9902004 [math.CO], 1999.
Crossrefs
Programs
-
Maple
a:= n-> n!^n: seq(a(n), n=0..12); # Alois P. Heinz, Jul 25 2013
-
Mathematica
Table[(n!)^n,{n,0,10}] (* Harvey P. Dale, Sep 29 2013 *)
-
Maxima
makelist(n!^n,n,0,10); /* Martin Ettl, Jan 13 2013 */
-
PARI
a(n)=n!^n;
Formula
a(n) = a(n-1)*n^n*(n-1)! = a(n-1)*A000169(n)*A000142(n) = A036740(n-1) * A000312(n)*A000142(n-1). - Henry Bottomley, Dec 06 2001
From Benoit Cloitre, Sep 17 2005: (Start)
a(n) = Product_{k=1..n} (k-1)!*k^k;
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - Vaclav Kotesovec, Nov 14 2014
a(n) = Product_{k=1..n} k^n. - José de Jesús Camacho Medina, Jul 12 2016
Sum_{n>=0} 1/a(n) = A261114. - Amiram Eldar, Nov 16 2020
Comments