cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036769 Number of ordered rooted trees with n non-root nodes and all outdegrees <= seven.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4852, 16730, 58422, 206192, 734332, 2635680, 9524301, 34622207, 126520393, 464517300, 1712650520, 6338433840, 23538973950, 87690410580, 327611738790, 1227178265182, 4607940112396, 17341126763366, 65395548619912
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A288942.

Programs

  • Maple
    r := 7; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(7, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j], {j, 1, Min[7, o]}]];
    a[n_] := b[0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/sum(k=0,7,x^k)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k=1..7} x^k*A(x)^k. - Ilya Gutkovskiy, May 03 2019

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017