A036776 a(n) is the number of labeled rooted trees on a set of size n where each node has at most 4 neighbors that are further away from the root than the node itself.
0, 1, 2, 9, 64, 625, 7770, 117390, 2088520, 42771960, 991090800, 25635767850, 732235165200, 22890759391500, 777398836414200, 28501053507927000, 1121908690738836000, 47194400446765572000, 2112854517933207048000, 100302903229033765260000, 5032863920347902999360000
Offset: 0
Keywords
Links
- B. Otto, Coalescence under Preimage Constraints, arXiv:1903.00542 [math.CO], 2019, Corollaries 5.3 and 7.8.
- L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (14) with r = 4.
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Mathematica
nn=18;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-x(1+f[x]+f[x]^2/2+f[x]^3/3!+f[x]^4/4!),{x,0,nn}],x];Table[a[n],{n,0,nn}]/.s (* Geoffrey Critzer, Mar 23 2013 *) f[r_, n_][x_] := Sum[x^k/k!, {k, 0, r}]^n; a[n_] := If[n == 1, 1, Derivative[n-1][f[4, n]][0]]; a /@ Range[0, 20] (* Jean-François Alcover, Apr 20 2020, after Petros Hadjicostas in A036777 *)
-
Maxima
a(n):=(n!*sum(binomial(n+1,r)*sum(binomial(r,m)*sum(binomial(j,-r+n-m-j)*2^(2*r-2*n+m+2*j)*binomial(m,j)*(3)^(-j),j,0,m),m,0,r),r,0,n+1)); /* Vladimir Kruchinin, Nov 22 2011 */
-
Python
# print first num_entries entries in the sequence import math, sympy; x=sympy.symbols('x') k=4; num_entries = 64 P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP for term in range(1,num_entries-1): curr_pow=(curr_pow*eP).expand() r.append(curr_pow.coeff(x**term)*math.factorial(term)) print(r) # Benjamin Otto, Apr 11 2019
Formula
From Vladimir Kruchinin, Nov 22 2011: (Start)
E.g.f. A(x) satisfies: A(x) = 1 + x*A(x) + (1/2)*x^2*A(x)^2 + (1/6)*x^3*A(x)^3 + (1/24)*A(x)^4.
a(n) = n!*Sum_{r=0..n+1} binomial(n+1,r)*Sum_{m=0..r} binomial(r,m)*Sum_{j=0..m} binomial(j,-r+n-m-j)*2^(2*r-2*n+m+2*j)*binomial(m,j)*3^(-j). (End)
a(n) = (n-1)! * [x^(n-1)] e_4(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. The Otto link above yields explicit constants c_k, r_k so that the columns are asymptotically c_4 * n^(-3/2) * r_4^-n. - Benjamin Otto, Apr 11 2019
Extensions
Edited by N. J. A. Sloane, Jul 13 2019 using data from a duplicate of this entry that was submitted by Benjamin Otto, Apr 08 2019
Comments