cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A036886 Number of partitions of 5n such that cn(0,5) = cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).

Original entry on oeis.org

1, 3, 6, 13, 27, 61, 132, 285, 590, 1190, 2325, 4441, 8288, 15197, 27394, 48679, 85332, 147790, 253016, 428602, 718696, 1193779, 1964996, 3206966, 5191350, 8339001, 13296592, 21053380, 33112242, 51746168, 80372146, 124104612, 190557592
Offset: 1

Views

Author

Keywords

Comments

Alternatively, number of partitions of 5n such that cn(0,5) = cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

Formula

a(n) = A036884(n) - A046776(n)
a(n) = A036885(n) - A036894(n)
a(n) = A036883(n) - A036893(n)

Extensions

Terms a(10) onward from Max Alekseyev, Dec 10 2011

A036892 Number of partitions of 5n such that cn(1,5) = cn(4,5) < cn(0,5) = cn(2,5) = cn(3,5).

Original entry on oeis.org

0, 1, 3, 7, 14, 30, 62, 133, 275, 562, 1109, 2145, 4035, 7457, 13509, 24115, 42405, 73667, 126420, 214681, 360778, 600625, 990756, 1620449, 2628504, 4230770, 6758916, 10721739, 16892541, 26443435, 41137558, 63618639, 97825383, 149605621, 227593695
Offset: 1

Views

Author

Keywords

Comments

Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) < cn(0,5) = cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

Formula

a(n) = A036891(n) - A036895(n)
a(n) = A036890(n) - A036894(n)
a(n) = A036889(n) - A046776(n)

Extensions

Terms a(10) onward from Max Alekseyev, Dec 11 2011

A036890 Number of partitions of 5n such that cn(1,5) = cn(4,5) < cn(0,5) <= cn(2,5) = cn(3,5).

Original entry on oeis.org

0, 1, 4, 11, 27, 63, 142, 312, 665, 1382, 2795, 5524, 10674, 20228, 37634, 68886, 124179, 220779, 387458, 671883, 1152027, 1954614, 3283494, 5464437, 9013558, 14743397, 23923577, 38526121, 61593796, 97795238, 154251217, 241765892, 376643803, 583370176
Offset: 1

Views

Author

Keywords

Comments

Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) < cn(0,5) <= cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

Programs

  • Maple
    mkl:= proc(i,l) local ll, mn, x; ll:= applyop(x->x+1, irem (i,5)+1, l); mn:= min(ll[]); `if`(mn=0, ll, map(x->x-mn, ll)) end:
    g:= proc (n,i,t) if n<0 then 0 elif n=0 then `if`(t[2]=t[5] and t[3]=t[4] and t[5]t[4], 0, g(n-2*(t[4]-t[3]), 1, [t[1], t[2], t[4], t[4], t[5]])) else g(n,i,t):= g(n, i-1, t) + g(n-i, i, mkl(i,t)) fi end:
    a:= n-> g(5*n, 5*n, [0,0,0,0,0]):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jul 02 2009
  • Mathematica
    mkl[i_, l_List] := Module[{ll, mn, x}, ll = MapAt[#+1&, l, Mod[i, 5]+1]; mn = Min[ll]; If[mn == 0, ll, ll-mn]]; g[n_, i_, t_List] := g[n, i, t] = Which[n<0, 0, n == 0, If[t[[2]] == t[[5]] && t[[3]] == t[[4]] && t[[5]] < t[[1]] && t[[1]] <= t[[3]], 1, 0], True, Which[i == 0, 0, i == 1, g[0, 0, {t[[1]], t[[2]]+n, t[[3]], t[[4]], t[[5]]}], i == 2, If[t[[3]] > t[[4]], 0, g[n-2*(t[[4]] - t[[3]]), 1, t[[{1, 2, 4, 4, 5}]]]], True, g[n, i, t] = g [n, i-1, t] + g[n-i, i, mkl[i, t]]]]; a[n_] := a[n] = g[5*n, 5*n, {0, 0, 0, 0, 0}]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 32}] (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)

Formula

a(n) = A036892(n) + A036894(n).
a(n) = A036881(n) - A036884(n).

Extensions

a(10)-a(32) from Alois P. Heinz, Jul 02 2009
a(33)-a(34) from Max Alekseyev, Dec 11 2011

A036885 Number of partitions of 5n such that cn(1,5) = cn(4,5) <= cn(0,5) < cn(2,5) = cn(3,5).

Original entry on oeis.org

1, 3, 7, 17, 40, 94, 212, 464, 980, 2010, 4011, 7820, 14927, 27968, 51519, 93450, 167106, 294902, 514054, 885804, 1509945, 2547768, 4257734, 7050954, 11576404, 18851628, 30461253, 48857762, 77813497, 123097971, 193485805, 302251865, 469376012
Offset: 1

Views

Author

Keywords

Comments

Alternatively, number of partitions of 5n such that cn(2,5) = cn(3,5) <= cn(0,5) < cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

Formula

a(n) = A036881(n) - A036889(n)
a(n) = A036886(n) + A036894(n)

Extensions

Terms a(10) onward from Max Alekseyev, Dec 10 2011

A202091 Number of partitions of 5n such that cn(1,5) = cn(4,5) and cn(2,5) = cn(3,5).

Original entry on oeis.org

1, 3, 11, 32, 88, 221, 532, 1213, 2672, 5676, 11724, 23568, 46315, 89076, 168124, 311763, 569000, 1023128, 1814776, 3178000, 5499588, 9411392, 15938221, 26726372, 44402336, 73121988, 119418609, 193488816, 311150404, 496783420, 787753316
Offset: 0

Views

Author

Max Alekseyev, Dec 11 2011

Keywords

Comments

For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

Crossrefs

Formula

a(n) = A046776(n) + A202086(n) + A202088(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
a(n) = A202192(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
Showing 1-5 of 5 results.