cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036896 Odd refactorable numbers.

Original entry on oeis.org

1, 9, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 4761, 5625, 6561, 7569, 8649, 12321, 15129, 16641, 19881, 25281, 31329, 33489, 35721, 40401, 45369, 47961, 50625, 56169, 62001, 71289, 84681, 91809, 95481, 99225, 103041, 106929, 114921
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Odd refactorable numbers are always squares.
All terms = 1 (mod 8). [Zak Seidov, May 25 2010]

Examples

			9 is refactorable because tau(9)=3 and 3 divides 9.
		

Crossrefs

Subsequence of A033950 and of A016754.

Programs

  • Mathematica
    Do[If[IntegerQ[n/DivisorSigma[0, n]], Print[n]], {n, 1, 100000, 2}]
    Select[Range[1,1001,2]^2,Divisible[#,DivisorSigma[0,#]]&] (* Harvey P. Dale, Jan 22 2012 *)
  • PARI
    is(n)=n%2&&issquare(n)&&n%numdiv(n)==0 \\ Charles R Greathouse IV, Apr 23 2013
    
  • PARI
    list(lim)=my(v=List(),f);forstep(n=1,sqrtint(lim\1),2,f=factor(n)[,2];if(n^2%prod(i=1,#f,2*f[i]+1)==0,listput(v,n^2))); Vec(v) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A036896_gen(): # generator of terms
        for n in count(1,2):
            if not (m:=n**2)%prod(e<<1|1 for e in factorint(n).values()): yield m
    A036896_list = list(islice(A036896_gen(),40)) # Chai Wah Wu, Oct 04 2024